82 research outputs found

    A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters

    Get PDF
    Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells

    Get PDF
    Thymic epithelial cell differentiation, growth and function depend on the expression of the transcription factor Foxn1; however, its target genes have never been physically identified. Using static and inducible genetic model systems and chromatin studies, we developed a genome-wide map of direct Foxn1 target genes for postnatal thymic epithelia and defined the Foxn1 binding motif. We determined the function of Foxn1 in these cells and found that, in addition to the transcriptional control of genes involved in the attraction and lineage commitment of T cell precursors, Foxn1 regulates the expression of genes involved in antigen processing and thymocyte selection. Thus, critical events in thymic lympho-stromal cross-talk and T cell selection are indispensably choreographed by Foxn1

    Targeting cells with single vectors using multiple-feature Boolean logic

    Get PDF
    Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology

    HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing.

    Get PDF
    Trastuzumab-based therapy has been shown to confer overall survival benefit in HER2-positive patients with advanced gastric cancer in a large multicentric trial (ToGA study). Subgroup analysis identified adenocarcinomas of the stomach and gastroesophageal (GE) junction with overexpression of HER2 according to immunohistochemistry (IHC) as potential responders. Due to recent approval of trastuzumab for HER2 positive metastatic gastric and GE-junction cancer in Europe (EMEA) HER2 diagnostics is now mandatory with IHC being the primary test followed by fluorescence in situ hybridization (FISH) in IHC2+ cases. However, in order to not miss patients potentially responding to targeted therapy determination of a HER2-positive status for gastric cancer required modification of scoring as had been proposed in a pre-ToGA study. To validate this new HER2 status testing procedure in terms of inter-laboratory and inter-observer consensus for IHC scoring a series of 547 gastric cancer tissue samples on a tissue microarray (TMA) was used. In the first step, 30 representative cores were used to identify specific IHC HER2 scoring issues among eight French and German laboratories, while in the second step the full set of 547 cores was used to determine IHC HER2 intensity and area score concordance between six German pathologists. Specific issues relating to discordance were identified and recommendations formulated which proved to be effective to reliably determine HER2 status in a prospective test series of 447 diagnostic gastric cancer specimens
    • 

    corecore