111 research outputs found

    A practical guide to loss measurements using the Fourier transform of the transmission spectrum

    Full text link
    Analyzing the internal loss characteristics and multimodedness of (integrated) optical devices can prove difficult. One technique to recover this information is to Fourier transform the transmission spectrum of optical components. This article gives instruction on how to perform the transmission measurement, prepare the data, and interpret the Fourier spectrum. Our guide offers insights into the influence of sampling, windowing, zero padding as well as Fourier spectrum peak heights and shapes which are previously neglected in the literature but have considerable impact on the results of the method. For illustration, we apply the method to a Bragg-reflection waveguide. We find that the waveguide is multimodal with two modes having very similar group refractive indices but different optical losses

    Digital reconstruction of the Ceprano calvarium (Italy), and implications for its interpretation

    Get PDF
    The Ceprano calvarium was discovered in fragments on March 1994 near the town of Ceprano in southern Latium (Italy), embedded in Middle Pleistocene layers. After reconstruction, its morphological features suggests that the specimen belongs to an archaic variant of H. heidelbergensis, representing a proxy for the last common ancestor of the diverging clades that respectively led to H. neanderthalensis and H. sapiens. Unfortunately, the calvarium was taphonomically damaged. The postero-lateral vault, in particular, appears deformed and this postmortem damage may have infuenced previous interpretations. Specifcally, there is a depression on the fragmented left parietal, while the right cranial wall is warped and angulated. This deformation afected the shape of the occipital squama, producing an inclination of the transverse occipital torus. In this paper, after X-ray microtomography (ÎŒCT) of both the calvarium and several additional fragments, we analyze consistency and pattern of the taphonomic deformation that afected the specimen, before the computer-assisted retrodeformation has been performed; this has also provided the opportunity to reappraise early attempts at restoration. As a result, we ofer a revised interpretation for the Ceprano calvarium’s original shape, now free from the previous uncertainties, along with insight for its complex depositional and taphonomic history

    A geometric morphometric relationship predicts stone flake shape and size variability

    Get PDF
    The archaeological record represents a window onto the complex relationship between stone artefact variance and hominin behaviour. Differences in the shapes and sizes of stone flakes-the most abundant remains of past behaviours for much of human evolutionary history-may be underpinned by variation in a range of different environmental and behavioural factors. Controlled flake production experiments have drawn inferences between flake platform preparation behaviours, which have thus far been approximated by linear measurements, and different aspects of overall stone flake variability (Dibble and Rezek J Archaeol Sci 36:1945-1954, 2009; Lin et al. Am Antiq 724-745, 2013; Magnani et al. J Archaeol Sci 46:37-49, 2014; Rezek et al. J Archaeol Sci 38:1346-1359, 2011). However, when the results are applied to archaeological assemblages, there remains a substantial amount of unexplained variability. It is unclear whether this disparity between explanatory models and archaeological data is a result of measurement error on certain key variables, whether traditional analyses are somehow a general limiting factor, or whether there are additional flake shape and size drivers that remain unaccounted for. To try and circumvent these issues, here, we describe a shape analysis approach to assessing stone flake variability including a newly developed three-dimensional geometric morphometric method (\u273DGM\u27). We use 3DGM to demonstrate that a relationship between platform and flake body governs flake shape and size variability. Contingently, we show that by using this 3DGM approach, we can use flake platform attributes to both (1) make fairly accurate stone flake size predictions and (2) make relatively detailed predictions of stone flake shape. Whether conscious or instinctive, an understanding of this geometric relationship would have been critical to past knappers effectively controlling the production of desired stone flakes. However, despite being able to holistically and accurately incorporate three-dimensional flake variance into our analyses, the behavioural drivers of this variance remain elusive

    A quantitative analysis of stratospheric HCl, HNO3, and O3 in the tropopause region near the subtropical jet

    Get PDF
    The effects of chemical two-way mixing on the Extratropical Transition Layer (ExTL) near the subtropical jet are investigated by stratospheric tracer-tracer correlations. To this end, in situ measurements were performed west of Africa (25–32◩N) during the Transport and Composition of the Upper Troposphere Lower Stratosphere (UTLS)/Earth System Model Validation (TACTS/ESMVal) mission in August/September 2012. The Atmospheric chemical Ionization Mass Spectrometer sampling HCl and HNO3 was for the first time deployed on the new German High Altitude and Long range research aircraft (HALO). Measurements of O3, CO, European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, and the tight correlation of the unambiguous tracer HCl to O3 and HNO3 in the lower stratosphere were used to quantify the stratospheric content of these species in the ExTL. With increasing distance from the tropopause, the stratospheric content increased from 10% to 100% with differing profiles for HNO3 and O3. Tropospheric fractions of 20% HNO3 and 40% O3 were detected up to a distance of 30 K above the tropopause

    Fabrication of low-loss III-V Bragg-reflection waveguides for parametric down-conversion

    Full text link
    Entangled photon pairs are an important resource for quantum cryptography schemes that go beyond point-to-point communication. Semiconductor Bragg-reflection waveguides are a promising photon-pair source due to mature fabrication, integrability, large transparency window in the telecom wavelength range, integration capabilities for electro-optical devices as well as a high second-order nonlinear coefficient. To increase performance we improved the fabrication of Bragg-reflection waveguides by employing fixed-beam-moving-stage optical lithography, low pressure and low chlorine concentration etching, and resist reflow. The reduction in sidewall roughness yields a low optical loss coefficient for telecom wavelength light of alpha_reflow = 0.08(6)mm^(-1). Owing to the decreased losses, we achieved a photon pair production rate of 8800(300)(mW*s*mm)^(-1) which is 15-fold higher than in previous samples

    Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography

    Get PDF
    Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and T-NAWDEX-Falcon in October 2012, a preparatory campaign for the THORPEX North Atlantic Waveguide and Downstream Impact Experiment (T-NAWDEX). Trajectories were used to link different observations along the WCB, that is, to establish so-called Lagrangian matches between observations. To this aim, an ensemble of wind fields from the global analyses produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble of Data Assimilations (EDA) system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the German Aerospace Center (DLR) Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations, the confirmation of the WCB transport by an inert tracer and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs.</p

    Zygomatic bone shape in intentional cranial deformations: a model for the study of the interactions between skull growth and facial morphology

    Get PDF
    Intentional cranial deformations (ICD) were obtained by exerting external mechanical constraints on the skull vault during the first years of life to permanently modify head shape. The repercussions of ICD on the face are not well described in the midfacial region. Here we assessed the shape of the zygomatic bone in different types of ICDs. We considered 14 non-deformed skulls, 19 skulls with antero-posterior deformation, nine skulls with circumferential deformation and seven skulls with Toulouse deformation. The shape of the zygomatic bone was assessed using a statistical shape model after mesh registration. Euclidian distances between mean models and Mahalanobis distances after canonical variate analysis were computed. Classification accuracy was computed using a cross-validation approach. Different ICDs cause specific zygomatic shape modifications corresponding to different degrees of retrusion but the shape of the zygomatic bone alone is not a sufficient parameter for classifying populations into ICD groups defined by deformation types. We illustrate the fact that external mechanical constraints on the skull vault influence midfacial growth. ICDs are a model for the study of the influence of epigenetic factors on craniofacial growth and can help to understand the facial effects of congenital skull malformations such as single or multi-suture synostoses, or of external orthopedic devices such as helmets used to correct deformational plagiocephaly.R.H.K. and S.K. were supported by the Union des BlessĂ©s de la Face et de la TĂȘte, Fondation des ‘Gueules CassĂ©es’. S.K. was supported by the FĂ©dĂ©ration Française d’Orthodontie (FFO)

    Enhanced sulfur in the upper troposphere and lower stratosphere in spring 2020

    Get PDF
    Sulfur compounds in the upper troposphere and lower stratosphere (UTLS) impact the atmosphere radiation budget, either directly as particles or indirectly as precursor gas for new particle formation. In situ measurements in the UTLS are rare but are important to better understand the impact of the sulfur budget on climate. The BLUESKY mission in May and June 2020 explored an unprecedented situation. (1) The UTLS experienced extraordinary dry conditions in spring 2020 over Europe, in comparison to previous years, and (2) the first lockdown of the COVID-19 pandemic caused major emission reductions from industry, ground, and airborne transportation. With the two research aircraft HALO and Falcon, 20 flights were conducted over central Europe and the North Atlantic to investigate the atmospheric composition with respect to trace gases, aerosol, and clouds. Here, we focus on measurements of sulfur dioxide (SO2_{2}) and particulate sulfate (SO2−^{2-}4_{4}) in the altitude range of 8 to 14.5 km which show unexpectedly enhanced mixing ratios of SO2_{2} in the upper troposphere and of SO2−^{2-}4_{4} in the lowermost stratosphere. In the UT, we find SO2_{2} mixing ratios of (0.07±0.01) ppb, caused by the remaining air traffic, and reduced SO2_{2} sinks due to low OH and low cloud fractions and to a minor extent by uplift from boundary layer sources. Particulate sulfate showed elevated mixing ratios of up to 0.33 ppb in the LS. We suggest that the eruption of the volcano Raikoke in June 2019, which emitted about 1 Tg SO2_{2} into the stratosphere in northern midlatitudes, caused these enhancements, in addition to Siberian and Canadian wildfires and other minor volcanic eruptions. Our measurements can help to test models and lead to new insights in the distribution of sulfur compounds in the UTLS, their sources, and sinks. Moreover, these results can contribute to improving simulations of the radiation budget in the UTLS with respect to sulfur effects
    • 

    corecore