1,089 research outputs found

    On a new definition of quantum entropy

    Full text link
    It is proved here that, as a consequence of the unitary quantum evolution, the expectation value of a properly defined quantum entropy operator (as opposed to the non-evolving von Neumann entropy) can only increase during non adiabatic transformations and remains constant during adiabatic ones. Thus Clausius formulation of the second law is established as a theorem in quantum mechanics, in a way that is equivalent to the previously established formulation in terms of minimal work principle [A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)]. The corresponding Quantum Mechanical Principle of Entropy Increase is then illustrated with an exactly solvable example, namely the driven harmonic oscillator. Attention is paid to both microcanonical and canonical initial condition. The results are compared to their classical counterparts.Comment: 4 pages, 3 figure

    Electron-Phonon Coupling in Charged Buckminsterfullerene

    Full text link
    A simple, yet accurate solution of the electron-phonon coupling problem in C_{60} is presented. The basic idea behind it is to be found in the parametrization of the ground state electronic density of the system calculated making use of ab-initio methods, in term of sp2+x^{2+x} hybridized orbitals. This parametrization allows for an economic determination of the deformation potential associated with the fullerene's normal modes. The resulting electron-phonon coupling constants are used to calculate Jahn-Teller effects in C_{60}^-, and multiple satellite peaks in the corresponding photoemission reaction. Theory provides an accurate account of the experimental findings.Comment: 11 pages, 3 figures. Accepted for publication in Chem. Phys. Let

    Derivation of Boltzmann Principle

    Full text link
    We present a derivation of Boltzmann principle SB=kBlnWS_{B}=k_{B}\ln \mathcal{W} based on classical mechanical models of thermodynamics. The argument is based on the heat theorem and can be traced back to the second half of the nineteenth century with the works of Helmholtz and Boltzmann. Despite its simplicity, this argument has remained almost unknown. We present it in a modern, self-contained and accessible form. The approach constitutes an important link between classical mechanics and statistical mechanics

    Analysis of the Accuracy of Prediction of the Celestial Pole Motion

    Full text link
    VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession- nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models---namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p

    The influence of Galactic aberration on precession parameters determined from VLBI observations

    Full text link
    The influence of proper motions of sources due to Galactic aberration on precession models based on VLBI data is determined. Comparisons of the linear trends in the coordinates of the celestial pole obtained with and without taking into account Galactic aberration indicate that this effect can reach 20 μ\muas per century, which is important for modern precession models. It is also shown that correcting for Galactic aberration influences the derived parameters of low-frequency nutation terms. It is therefore necessary to correct for Galactic aberration in the reduction of modern astrometric observations

    Acoustic wave propagation in the solar sub-photosphere with localised magnetic field concentration: effect of magnetic tension

    Get PDF
    Aims: We analyse numerically the propagation and dispersion of acoustic waves in the solar-like sub-photosphere with localised non-uniform magnetic field concentrations, mimicking sunspots with various representative magnetic field configurations. Methods: Numerical simulations of wave propagation through the solar sub-photosphere with a localised magnetic field concentration are carried out using SAC, which solves the MHD equations for gravitationally stratified plasma. The initial equilibrium density and pressure stratifications are derived from a standard solar model. Acoustic waves are generated by a source located at the height corresponding approximately to the visible surface of the Sun. By means of local helioseismology we analyse the response of vertical velocity at the level corresponding to the visible solar surface to changes induced by magnetic field in the interior. Results: The results of numerical simulations of acoustic wave propagation and dispersion in the solar sub-photosphere with localised magnetic field concentrations of various types are presented. Time-distance diagrams of the vertical velocity perturbation at the level corresponding to the visible solar surface show that the magnetic field perturbs and scatters acoustic waves and absorbs the acoustic power of the wave packet. For the weakly magnetised case, the effect of magnetic field is mainly thermodynamic, since the magnetic field changes the temperature stratification. However, we observe the signature of slow magnetoacoustic mode, propagating downwards, for the strong magnetic field cases

    Cross-Comparison of Climate Change adaptation Strategies Across Large River Basins in Europe, Africa and Asia

    Get PDF
    A cross-comparison of climate change adaptation strategies across regions was performed, considering six large river basins as case study areas. Three of the basins, namely the Elbe, Guadiana, and Rhine, are located in Europe, the Nile Equatorial Lakes region and the Orange basin are in Africa, and the Amudarya basin is in Central Asia. The evaluation was based mainly on the opinions of policy makers and water management experts in the river basins. The adaptation strategies were evaluated considering the following issues: expected climate change, expected climate change impacts, drivers for development of adaptation strategy, barriers for adaptation, state of the implementation of a range of water management measures, and status of adaptation strategy implementation. The analysis of responses and cross-comparison were performed with rating the responses where possible. According to the expert opinions, there is an understanding in all six regions that climate change is happening. Different climate change impacts are expected in the basins, whereas decreasing annual water availability, and increasing frequency and intensity of droughts (and to a lesser extent floods) are expected in all of them. According to the responses, the two most important drivers for development of adaptation strategy are: climate-related disasters, and national and international policies. The following most important barriers for adaptation to climate change were identified by responders: spatial and temporal uncertainties in climate projections, lack of adequate financial resources, and lack of horizontal cooperation. The evaluated water resources management measures are on a relatively high level in the Elbe and Rhine basins, followed by the Orange and Guadiana. It is lower in the Amudarya basin, and the lowest in the NEL region, where many measures are only at the planning stage. Regarding the level of adaptation strategy implementation, it can be concluded that the adaptation to climate change has started in all basins, but progresses rather slowl

    Radon (222Rn) as Tracer for Submarine Groundwater Discharge Investigation—Limitations of the Approach at Shallow Wind-Exposed Coastal Settings

    Get PDF
    Mapping radon (222Rn) distribution patterns in the coastal sea is a widely applied method for localizing and quantifying submarine groundwater discharge (SGD). While the literature reports a wide range of successful case studies, methodical problems that might occur in shallow wind-exposed coastal settings are generally neglected. This paper evaluates causes and effects that resulted in a failure of the radon approach at a distinct shallow wind-exposed location in the Baltic Sea. Based on a simple radon mass balance model, we discuss the effect of both wind speed and wind direction as causal for this failure. We show that at coastal settings, which are dominated by gentle submarine slopes and shallow waters, both parameters have severe impact on coastal radon distribution patterns, thus impeding their use for SGD investigation. In such cases, the radon approach needs necessarily to allow for the impact of wind speed and wind direction not only during but also prior to the field campaign

    Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection

    Full text link
    A statistical-mechanical investigation is performed on Rayleigh-B\'enard convection of a dilute classical gas starting from the Boltzmann equation. We first present a microscopic derivation of basic hydrodynamic equations and an expression of entropy appropriate for the convection. This includes an alternative justification for the Oberbeck-Boussinesq approximation. We then calculate entropy change through the convective transition choosing mechanical quantities as independent variables. Above the critical Rayleigh number, the system is found to evolve from the heat-conducting uniform state towards the convective roll state with monotonic increase of entropy on the average. Thus, the principle of maximum entropy proposed for nonequilibrium steady states in a preceding paper is indeed obeyed in this prototype example. The principle also provides a natural explanation for the enhancement of the Nusselt number in convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a double counting for k=0k_{\perp}=0; Figs. 1-4 replace

    Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing

    Get PDF
    Pechtl A, Rückert C, Maus I, et al. Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing. Genome Announcements. 2018;6(6): e01493-17.The cellulolytic bacterium Herbivorax saccincola strain GGR1, which represents the type strain of this species, was isolated from the in vivo enriched cellulose-binding community of a lab scale thermophilic biogas reactor. Here, we report the complete genome sequence of H. saccincola GGR1T, the first isolated member of the genus Herbivorax
    corecore