23 research outputs found

    The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features

    Full text link
    Background: Cassava (Manihot esculenta) is an important clonally propagated food crop in tropical and subtropical regions worldwide. Genetic gain by molecular breeding has been limited, partially because cassava is a highly heterozygous crop with a repetitive and difficult-to-assemble genome. Findings: Here we demonstrate that Pacific Biosciences high-fidelity (HiFi) sequencing reads, in combination with the assembler hifiasm, produced genome assemblies at near complete haplotype resolution with higher continuity and accuracy compared to conventional long sequencing reads. We present 2 chromosome-scale haploid genomes phased with Hi-C technology for the diploid African cassava variety TME204. With consensus accuracy >QV46, contig N50 >18 Mb, BUSCO completeness of 99%, and 35k phased gene loci, it is the most accurate, continuous, complete, and haplotype-resolved cassava genome assembly so far. Ab initio gene prediction with RNA-seq data and Iso-Seq transcripts identified abundant novel gene loci, with enriched functionality related to chromatin organization, meristem development, and cell responses. During tissue development, differentially expressed transcripts of different haplotype origins were enriched for different functionality. In each tissue, 20-30% of transcripts showed allele-specific expression (ASE) differences. ASE bias was often tissue specific and inconsistent across different tissues. Direction-shifting was observed in <2% of the ASE transcripts. Despite high gene synteny, the HiFi genome assembly revealed extensive chromosome rearrangements and abundant intra-genomic and inter-genomic divergent sequences, with large structural variations mostly related to LTR retrotransposons. We use the reference-quality assemblies to build a cassava pan-genome and demonstrate its importance in representing the genetic diversity of cassava for downstream reference-guided omics analysis and breeding. Conclusions: The phased and annotated chromosome pairs allow a systematic view of the heterozygous diploid genome organization in cassava with improved accuracy, completeness, and haplotype resolution. They will be a valuable resource for cassava breeding and research. Our study may also provide insights into developing cost-effective and efficient strategies for resolving complex genomes with high resolution, accuracy, and continuity

    Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses

    Full text link
    Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses

    Silent brain infarcts impact on cognitive function in atrial fibrillation

    Full text link
    Aims: We aimed to investigate the association of clinically overt and silent brain lesions with cognitive function in atrial fibrillation (AF) patients. Methods and results: We enrolled 1227 AF patients in a prospective, multicentre cohort study (Swiss-AF). Patients underwent standardized brain magnetic resonance imaging (MRI) at baseline and after 2 years. We quantified new small non-cortical infarcts (SNCIs) and large non-cortical or cortical infarcts (LNCCIs), white matter lesions (WML), and microbleeds (Mb). Clinically, silent infarcts were defined as new SNCI/LNCCI on follow-up MRI in patients without a clinical stroke or transient ischaemic attack (TIA) during follow-up. Cognition was assessed using validated tests. The mean age was 71 years, 26.1% were females, and 89.9% were anticoagulated. Twenty-eight patients (2.3%) experienced a stroke/TIA during 2 years of follow-up. Of the 68 (5.5%) patients with ≥1 SNCI/LNCCI, 60 (88.2%) were anticoagulated at baseline and 58 (85.3%) had a silent infarct. Patients with brain infarcts had a larger decline in cognition [median (interquartile range)] changes in Cognitive Construct score [-0.12 (-0.22; -0.07)] than patients without new brain infarcts [0.07 (-0.09; 0.25)]. New WML or Mb were not associated with cognitive decline. Conclusion: In a contemporary cohort of AF patients, 5.5% had a new brain infarct on MRI after 2 years. The majority of these infarcts was clinically silent and occurred in anticoagulated patients. Clinically, overt and silent brain infarcts had a similar impact on cognitive decline. Clinical trial registration: ClinicalTrials.gov Identifier: NCT02105844, https://clinicaltrials.gov/ct2/show/NCT02105844. Keywords: Atrial fibrillation; Brain infarction; Cognitive function; Magnetic resonance imaging; Oral anticoagulation

    Long-term risk of adverse outcomes according to atrial fibrillation type

    Full text link
    Sustained forms of atrial fibrillation (AF) may be associated with a higher risk of adverse outcomes, but few if any long-term studies took into account changes of AF type and co-morbidities over time. We prospectively followed 3843 AF patients and collected information on AF type and co-morbidities during yearly follow-ups. The primary outcome was a composite of stroke or systemic embolism (SE). Secondary outcomes included myocardial infarction, hospitalization for congestive heart failure (CHF), bleeding and all-cause mortality. Multivariable adjusted Cox proportional hazards models with time-varying covariates were used to compare hazard ratios (HR) according to AF type. At baseline 1895 (49%), 1046 (27%) and 902 (24%) patients had paroxysmal, persistent and permanent AF and 3234 (84%) were anticoagulated. After a median (IQR) follow-up of 3.0 (1.9; 4.2) years, the incidence of stroke/SE was 1.0 per 100 patient-years. The incidence of myocardial infarction, CHF, bleeding and all-cause mortality was 0.7, 3.0, 2.9 and 2.7 per 100 patient-years, respectively. The multivariable adjusted (a) HRs (95% confidence interval) for stroke/SE were 1.13 (0.69; 1.85) and 1.27 (0.83; 1.95) for time-updated persistent and permanent AF, respectively. The corresponding aHRs were 1.23 (0.89, 1.69) and 1.45 (1.12; 1.87) for all-cause mortality, 1.34 (1.00; 1.80) and 1.30 (1.01; 1.67) for CHF, 0.91 (0.48; 1.72) and 0.95 (0.56; 1.59) for myocardial infarction, and 0.89 (0.70; 1.14) and 1.00 (0.81; 1.24) for bleeding. In this large prospective cohort of AF patients, time-updated AF type was not associated with incident stroke/SE

    DomainViz: intuitive visualization of consensus domain distributions across groups of proteins

    No full text
    The prediction of functional domains is typically among the first steps towards understanding the function of new proteins and protein families. There are numerous databases of annotated protein domains that permit researchers to identify domains on individual proteins of interest. However, it is necessary to perform high-throughput domain searches to gain evolutionary insight into the functions of proteins and protein families. Unfortunately, at present, it is difficult to search for, and visualize domain conservation across multiple proteins and/or multiple groups of proteins in an intuitive manner. Here we present DomainViz, a new web-server that streamlines the identification and visualization of domains across multiple protein sequences. Currently, DomainViz uses the well-established PFAM and Prosite databases for domain searching and assembles intuitive, publication-ready ‘monument valley’ plots (mv-plots) that display the extent of domain conservation along two dimensions: positionality and frequency of occurrence in the input protein sequences. In addition, DomainViz produces a conventional domain-ordering figure. DomainViz can be used to explore the conservation of domains within a single protein family, across multiple families, and across families from different species to support studies into protein function and evolution. The web-server is publicly available at: https://uhrigprotools.biology.ualberta.ca/domainviz.ISSN:1362-4962ISSN:0301-561

    Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes

    No full text
    Background Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. Results We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. Conclusions Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context.ISSN:1471-216

    Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes

    No full text
    Abstract Background Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. Results We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. Conclusions Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context

    Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome

    No full text
    Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high‐resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light‐to‐dark and dark‐to‐light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light–dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin‐dependent kinases among the primary light–dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.ISSN:0140-7791ISSN:1365-304
    corecore