25 research outputs found

    Strain-Tunable GaAs Quantum dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand

    Get PDF
    Entangled photon generation from semiconductor quantum dots via the biexciton-exciton cascade underlies various decoherence mechanisms related to the solid-state nature of the quantum emitters. So far, this has prevented the demonstration of nearly-maximally entangled photons without the aid of inefficient and complex post-selection techniques that are hardly suitable for quantum communication technologies. Here, we tackle this challenge using strain-tunable GaAs quantum dots driven under two-photon resonant excitation and with strictly-degenerate exciton states. We demonstrate experimentally that our on-demand source generates polarization-entangled photons with fidelity of 0.978(5) and concurrence of 0.97(1) without resorting to post-selection techniques. Moreover, we show that the remaining decoherence mechanisms can be overcome using a modest Purcell enhancement so as to achieve a degree of entanglement >0.99. Our results highlight that GaAs quantum dots can be readily used in advanced communication protocols relying on the non-local properties of quantum entanglement

    Strain-Tuning of the Optical Properties of Semiconductor Nanomaterials by Integration onto Piezoelectric Actuators

    Full text link
    The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary quantum dots. Future research directions and prospects are discussed.Comment: review manuscript, 78 pages, 27 figure

    Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I.

    Get PDF
    NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed

    ОСОБЕННОСТИ ЧИСЛЕННЫХ МЕТОДОВ РЕШЕНИЯ НЕСТАЦИОНАРНЫХ ЗАДАЧ ГЕОМЕХАНИКИ И ИХ ПРОГРАММНОЙ РЕАЛИЗАЦИИ

    Get PDF
    Приведен способ решения нестационарных задач геомеханики с применением методов крупных частиц и прогонки. Реализация способов осуществляется в среде разработки Visual Studio 2008

    Mass Photometry of Membrane Proteins

    Get PDF
    Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation

    Wirkungsforschung – über Allianzen von Evaluation und Managerialismus und die Möglichkeit erklärender Kritik

    No full text
    Ziegler H. Wirkungsforschung – über Allianzen von Evaluation und Managerialismus und die Möglichkeit erklärender Kritik. In: Schimpf E, Stehr J, eds. Kritisches Forschen in der Sozialen Arbeit. Gegenstandsbereiche – Kontextbedingungen – Positionierungen – Perspektiven. Wiesbaden: VS Verlag für Sozialwissenschaften; 2012: 93-105

    Polarimetric millimetre wave SAR for precision farming applications

    No full text
    A high resolution imaging millimetre wave SAR delivers three key parameters important for precision farming applications, namely range, reflectivity and polarization state. The reflectivity gives information upon the type of crop and its humidity. Especially in the millimeter wave region young growing green plants exhibit a considerably higher reflectivity than older, dry leaves. Dependent on the transmit-receive polarization also indications are given upon the humidity of the underlying soil. Polarimetry also allows to judge the ripeness of the grain as the geometry of the ear is changing during the ripening process

    Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases

    No full text
    Abstract Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa 3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa 3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo 3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain
    corecore