45 research outputs found

    Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Get PDF
    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU survey. The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure

    Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae

    Get PDF
    Indexación: Web of Science; Scopus.We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arcshaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6M⊙ yr-1 in 1994-1995 to 1.17 × 10-5M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw307

    Study of the Galactic radio sources in the SCORPIO survey resolved by ATCA at 2.1 GHz

    Get PDF
    We present a catalogue of a large sample of extended radio sources in the SCORPIO field, observed and resolved by the Australia Telescope Compact Array. SCORPIO, a pathfinder project for addressing the early operations of the Australia SKA Pathfinder, is a survey of ~5 square degrees between 1.4 and 3.1 GHz, centered at l=343.5{\deg}, b=0.75{\deg} and with an angular resolution of about 10 arcsec. It is aimed at understanding the scientific and technical challenges to be faced by future Galactic surveys. With a mean sensitivity around 100 μ\muJy/beam and the possibility to recover angular scales at least up to 4 arcmin, we extracted 99 extended sources, 35 of them detected for the first time. Among the 64 known sources 55 had at least a tentative classification in literature. Studying the radio morphology and comparing the radio emission with infrared we propose as candidates 6 new H II regions, 2 new planetary nebulae, 2 new luminous blue variable or Wolf--Rayet stars and 3 new supernova remnants. This study provides an overview of the potentiality of future radio surveys in terms of Galactic source extraction and characterization and a discussion on the difficulty to reduce and analyze interferometric data on the Galactic plane

    CAESAR source finder: recent developments and testing

    Get PDF
    A new era in radioastronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder (ASKAP). ASKAP started its Early Science program in October 2017 and several target fields were observed during the array commissioning phase. The SCORPIO field was the first observed in the Galactic Plane in Band 1 (792-1032 MHz) using 15 commissioned antennas. The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale of the data, source extraction and characterization, even in this Early Science phase, have to be carried out in a mostly automated way. This process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane. In this context we have extended and optimized a novel source finding tool, named CAESAR , to allow extraction of both compact and extended sources from radio maps. A number of developments have been done driven by the analysis of the SCORPIO map and in view of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of software maintainability and usability within the radio community. In this paper we present the current status of CAESAR and report a first systematic characterization of its performance for both compact and extended sources using simulated maps. Future prospects are discussed in light of the obtained results.Comment: 15 pages, 10 figure

    New high-frequency radio observations of the Cygnus Loop supernova remnant with the Italian radio telescopes

    Get PDF
    Supernova remnants (SNRs) represent a powerful laboratory to study the Cosmic-Ray acceleration processes at the shocks, and their relation to the properties of the circumstellar medium. With the aim of studying the high-frequency radio emission and investigating the energy distribution of accelerated electrons and the magnetic field conditions, we performed single-dish observations of the large and complex Cygnus Loop SNR from 7.0 to 24.8 GHz with the Medicina and the Sardinia Radio Telescope, focusing on the northern filament (NGC 6992) and the southern shell. Both regions show a spectrum well fitted by a power-law function (SναS\propto\nu^{-\alpha}), with spectral index α=0.45±0.05\alpha=0.45\pm0.05 for NGC 6992 and α=0.49±0.01\alpha=0.49\pm0.01 for the southern shell and without any indication of a spectral break. The spectra are significantly flatter than the whole Cygnus Loop spectrum (α=0.54±0.01\alpha=0.54\pm0.01), suggesting a departure from the plain shock acceleration mechanisms, which for NGC 6992 could be related to the ongoing transition towards a radiative shock. We model the integrated spectrum of the whole SNR considering the evolution of the maximum energy and magnetic field amplification. Through the radio spectral parameters, we infer a magnetic field at the shock of 10 μ\muG. This value is compatible with a pure adiabatic compression of the interstellar magnetic field, suggesting that the amplification process is currently inefficient.Comment: 19 pages, 13 figure

    Evolutionary Map of the Universe (EMU): 18-cm OH-maser discovery in ASKAP continuum images of the SCORPIO field

    Get PDF
    Abstract Low- and intermediate-mass stars end their life dispersing their outer layers into the circumstellar medium, during the asymptotic and post-asymptotic giant branch phases. OH masers at 18 cm offer an effective way to probe their circumstellar environment. In this work we present the discovery of seven OH maser sources likely associated with such evolved stars from the visual inspection of ASKAP continuum images. These seven sources do not emit real continuum emission, but the high sensitivity of our images allows us to detect their maser emission, resembling continuum sources. To confirm their nature, we carried out spectral-line observations with ATCA. All the sources showed the double-peaked spectra at 1612 MHz, typical of evolved stars. The detection of maser emission in continuum images can be a complementary and easy-to-use method to discover new maser sources with the large-area deep surveys conducted with the SKA precursors. The implication for radio stars studies are remarkable since pure OH maser sources (i.e. with no continuum associated) represent, at a sensitivity of 100 μJy beam1100\ \mu \mathrm{Jy\ beam}^{-1}, about 4 percent of all Galactic sources and by far the most numerous stellar population.</jats:p

    Design of cryogenic phased array feed for 4-8 GHz

    Get PDF
    We describe the design and architecture of PHAROS2, a cryogenically cooled 4-8 GHz Phased Array Feed (PAF) demonstrator with a digital beamformer for radio astronomy application. The instrument will be capable of synthesizing four independent single-polarization beams by combining 24 active elements of an array of Vivaldi antennas. PHAROS2, the upgrade of PHAROS (PHased Arrays for Reflector Observing Systems), features: a) commercial cryogenic LNAs with state-of-the-art performance, b) a “Warm Section” for signal filtering, conditioning and single downconversion to select a ≈275 MHz Intermediate Frequency (IF) bandwidth within the 4-8 GHz Radio Frequency (RF) band, c) an IF signal transportation by analog WDM (Wavelength Division Mutiplexing) fiber-optic link, and d) a FPGA-based Italian Tile Processing Module (iTPM) digital backend.peer-reviewe
    corecore