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ABSTRACT
Automated source extraction and parametrization represents a crucial challenge for the next-
generation radio interferometer surveys, such as those performed with the Square Kilometre
Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR

(Compact And Extended Source Automated Recognition), to detect and parametrize extended
sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image
denoising, compact source suppression and enhancement of diffuse emission, followed by an
adaptive superpixel clustering stage for final source segmentation. A parametrization stage pro-
vides source flux information and a wide range of morphology estimators for post-processing
analysis. We developed CAESAR in a modular software library, also including different methods
for local background estimation and image filtering, along with alternative algorithms for both
compact and diffuse source extraction. The method was applied to real radio continuum data
collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project,
a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square
Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied
over different test fields in the presence of compact sources, imaging artefacts and diffuse
emission from the Galactic plane and compared with existing algorithms. When compared
to a human-driven analysis, the designed algorithm was found capable of detecting known
target sources and regions of diffuse emission, outperforming alternative approaches over the
considered fields.

Key words: techniques: image processing – techniques: interferometric – radio continuum:
general – radio continuum: ISM.

1 IN T RO D U C T I O N

A new era in radio astronomy is approaching with the upcom-
ing continuum surveys (Norris et al. 2013) planned at the Square
Kilometre Array (SKA) precursor telescopes, such as the Wester-
bork Observations of the Deep APERTIF Northern-Sky (WODAN;
Röttgering et al. 2010) at the Westerbork Synthesis Radio Telescope
(WSRT), the Evolutionary Map of the Universe (EMU) survey
(Norris et al. 2011) at the Australian Square Kilometre Array
Pathfinder (ASKAP) and the MeerKAT International GigaHertz
Tiered Extragalactic Exploration (MIGHTEE) survey (Van der Hey-
den & Jarvis 2010) at the Meerkat observatory. There is expected

� E-mail: sriggi@oact.inaf.it

to be a considerable improvement in sensitivity, resolution and in-
stantaneous field of view compared to previous surveys. For in-
stance, WODAN and EMU will jointly provide full-sky cover-
age at 1.3 GHz with an unprecedented sensitivity down to 10–
15 µJy beam−1 and resolution around 10–15 arcsec. Phased array
feed (PAF) technology will allow instantaneous field of view of
8 and 30 deg2 for WODAN–APERTIF and ASKAP, respectively,
and a corresponding increase in survey speed of a factor ∼20 with
respect to the Very Large Array (VLA). MIGHTEE will allow even
better sensitivities (0.1–1 µJy beam−1 rms) although with a reduced
field of view (1 deg2). A dramatic gain in sensitivity (a factor of
100) and field of view will be achieved with the future operations
of the SKA.

New challenges are expected to be brought by these signif-
icant advances. One is related to the data product throughput
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Extended source detection in the SCORPIO survey 1487

(e.g. spectral-imaging data cubes) expected to be generated by the
SKA precursor telescopes, ranging from tens of gigabytes to sev-
eral petabytes,1 and by the future SKA observatory, of the order of
hundreds of terabytes per data cube in SKA1 and one order of mag-
nitude higher in SKA Phase II (Kitaeff et al. 2015). For instance,
up to 3 exabytes of fully processed data are expected in one year of
full SKA1 operation (Alexander, Bregman & Faulkner 2009). Such
amounts of data cannot be processed or stored and visualized on
local computing resources, at least using conventional data formats
so far used in astronomy.

Furthermore, with the increase in sensitivity and surveyed sky
area, a population of millions of sources will be potentially de-
tectable, making human-driven source extraction unfeasible. For
example, the EMU survey is expected to generate a catalogue of
∼70 million sources detected at the 5σ level of 50 µJy beam−1

(Norris et al. 2011).
For these reasons, considerable efforts are currently focused on

the development of algorithms to process imaging data and to extract
sources in a fast and mostly automated way and, at the same time, on
the search for new data standards and image compression formats
(e.g. Peters & Kitaeff 2014).

While extensive studies have been performed on compact source
search with several algorithms developed (Bertin & Arnouts 1996;
Hopkins et al. 2002, 2015; Whiting 2009; Hales et al. 2012; Hancock
et al. 2012; Whiting & Humphreys 2012; Peracaula et al. 2015),
particularly in the context of the ASKAP, detection of extended
sources in a completely unsupervised way (e.g. without requiring
any a priori information or source templates) is still a partially
explored field, at least for the radio domain. This motivates the
investment of resources on exploring completely new methods or
re-adapting known algorithms to the radio imaging case.

Different approaches have been recently proposed in such a
direction. Some of these make use of conventional thresholding
methods in the image wavelet or curvelet domain (e.g. Peracaula
et al. 2011), others employ compressive sampling techniques (e.g.
Dabbech et al. 2015). Other studies employ the circle Hough trans-
form to detect circular-like objects, such as supernova remnants or
bent-tail radio galaxies (Hollitt & Johnston-Hollitt 2012). In Norris
et al. (2011), several methods from the Computer Vision domain
have been reviewed. Waterfalling segmentation, circular or ellipti-
cal Hough transform and region growing were indicated as the most
suited to the problem of extended source search.

In the context of the SCORPIO project (Umana et al. 2015, here-
after Paper I; see Section 2), a pathfinder of the ASKAP–EMU
survey, and in view of the next-generation SKA surveys, we started
to develop algorithms for automated source detection and classifi-
cation. The designed method exploits some of the techniques and
algorithms already in use in other source finders, aiming to com-
bine their best features, but also introduces new features, particu-
larly on the background estimation, detection of extended sources
and source parametrization. Therefore, we focus on these novel as-
pects throughout the paper. A description of the method, based on
a superpixel segmentation and hierarchical merging, is presented in
Section 3. The algorithm has been tested on SCORPIO real radio
data observed at the Australian Telescope Compact Array (ATCA)
down to a sensitivity of 30 µJy beam−1. Typical results achieved
on sample field scenarios are presented and discussed in Section 4,
along with tests performed on the same fields observed at different
wavelengths.

1 ASKAP is expected to generate several petabytes per year of H I cube.

2 TH E S C O R P I O PRO J E C T

The SCORPIO project is a blind deep radio survey of a 2 × 2 deg2

sky patch towards the Galactic plane, using the ATCA in sev-
eral configurations. The survey has been conducted at 2.1 GHz
between 2011 and 2015, and has achieved an average resolution
around 10 arcsec. Further observations are already scheduled in
2016. The major scientific goals of the SCORPIO project are to
search for different populations of Galactic radio point sources and
to study circumstellar envelopes (related to young or evolved mas-
sive stars, planetary nebulae and supernova remnants), which is
extremely important for understanding Galaxy evolution (e.g. in-
terstellar medium chemical enrichment, star formation triggering,
etc.). Besides these scientific outputs, SCORPIO will be used as
a test-bed for the EMU survey, guiding its design strategy for the
Galactic plane sections. In particular, this includes exploring suit-
able strategies for effectively imaging and extracting sources em-
bedded in the diffuse emission expected at low Galactic latitudes
and investigating to what extent they can be employed in the EMU
survey.

The SCORPIO observations have produced a radio mosaic map
of 133 single pointings with rms down to 30 µJy beam−1. A pixel
size of 1.5 arcsec is chosen for the final map. This sensitivity and a
good uv-plane coverage have allowed the discovery of about 1000
new faint radio point sources and to satisfactorily map tens of ex-
tended sources. Preliminary results on a smaller pilot region of the
SCORPIO field have already been published in Paper I, while the
complete data reduction and analysis are still in progress.

3 A S E G M E N TAT I O N M E T H O D F O R
E X T E N D E D SO U R C E D E T E C T I O N

The detection of extended sources represents a hard task for source
finder algorithms. The main difficulties are due to the intrinsic
emission pattern, which is usually fainter compared to compact
sources (e.g. below the conventional 5σ significance level) and
spread over disjointed areas (e.g. unlike the adjacency assumption
taken in compact source finders). In addition, object borders are
usually soft and thus the standard edge detector algorithms are not
fully sensitive to them. Spatial filters are therefore often employed
to enhance the emission at some given scale.

Another issue is related to the estimation of reliable significance
levels for detection. In fact, the widely used method for local noise
and background estimation is typically biased around extended
source regions, namely higher significance levels are artificially
imposed for detection with respect to other image regions, free of
diffuse emission. Under these conditions, the source is likely to be
undetected particularly if it has a large extension.

Ideally, the source extraction task should provide a two-level hi-
erarchical information: a segmentation of the input map into back-
ground and foreground regions associated with a source object, and,
for each of these, a collection of nested regions representing source
features (e.g. clumps, shells, blobs) also at different scales.

With this goal, we designed a multistage method based on im-
age superpixel generation and hierarchical clustering. A schematic
pipeline of the algorithm stages is shown in Fig. 1 and is summarized
below.

(i) Filtering. To enhance extended structures, bright compact
sources need to be filtered out from the map and a residual image
needs to be generated and used as input for the following stages.
Compact source extraction, discussed in more detail in Section 3.2,
requires the computation of the background and noise maps to

MNRAS 460, 1486–1499 (2016)
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1488 S. Riggi et al.

Figure 1. Schematic pipeline of the designed source finder algorithm.

threshold the image at a suitable significance level. Furthermore,
a smoothing stage is introduced on the residual image to suppress
texture-like features due to imaging artefacts around the brightest
sources and to source residuals left after the previous dilation stage.
An edge-preserving guided filter (He, Sun & Tang 2013) was found
to provide optimal performances among the tested filters.

(ii) Extended source extraction. The smoothed residual image
is used as input for the segmentation algorithm described in Sec-
tion 3.3. It consists of three main stages. First, an over-segmentation
of the image into a collection of superpixels or regions is generated
and a set of appearance parameters (both intensity- and spatial-
based) is computed for each region. Then, a saliency map is com-
puted in the second stage from region dissimilarities and used to
drive region merging at the third stage, which is a sequence of clus-
tering steps producing a collection of segmented regions or a binary
mask as the final output.

(iii) Source parametrization. A set of morphological parameters
is calculated over the segmented regions and delivered to the user.

Additional details concerning each algorithm step are given in the
following sections.

3.1 Background and noise estimation

As noted in Paper I, both background and noise levels are sub-
jected to variations throughout the image, because of, for example,
diffuse emission around the Galactic plane or the accuracy of the
image reconstruction. Background and noise information are there-
fore estimated on a local basis using two alternative methods. The
first conventional method assumes a rectangular grid of sample
pixels and computes the local background and noise levels over
a sampling box, centred around each grid centre. Robust back-
ground/noise estimators are generally considered to reduce the bias

caused by the possible presence of sources falling in the sampling
box. For instance, SELAVY (Whiting 2009; Whiting & Humphreys
2012) uses the median and mean absolute deviation from the me-
dian (MAD), while the inter-quartile range is adopted in AEGEAN

(Hancock et al. 2012). Other methods use the previous estimators
iteratively clipped to reach a pre-specified tolerance, as in SEXTRAC-
TOR (Bertin & Arnouts 1996) or in Paper I. Several estimators are
available in our program: median/MAD, biweight or σ -clipped esti-
mators. Finally, a bicubic interpolation stage is carried out to derive
local estimates on a pixel-by-pixel basis (e.g. the background and
noise maps).

The second method exploits the pixel spatial information, ne-
glected by the conventional approach, along with the pixel inten-
sity distribution to produce less biased noise/background estimates.
Two different approaches were implemented. In the first, a super-
pixel partition of the image is generated (see Section 3.3 for more
details) with region size assumed comparable to the synthesized
beam size. An outlier analysis, based on a robust estimate of the
Mahalanobis distance (Rousseeuw & Van Zomeren 1990) on re-
gion median–MAD parameter space, is then performed to detect
significative regions (both positive or negative excesses), typically
associated with sources or artefacts. Pixels belonging to that re-
gion are marked and excluded from the background evaluation.
The background and noise maps are finally computed as above
by interpolating a robust estimator computed over background-
tagged pixels in sampling boxes sliding through the entire
image.

A second approach uses a flood-filling algorithm to detect and
iteratively clip blobs at some predefined significance level (e.g.
5σ ) with respect to the first-level estimate of the background and
noise maps. Background and noise maps are recomputed at each
iteration stage as described above. One or two iterations are typically
sufficient.

MNRAS 460, 1486–1499 (2016)
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Extended source detection in the SCORPIO survey 1489

Table 1. Main parameters used in the source finder algorithm.

Stage Parameter Description

Background bkgModel Model to be used for computing the background and noise maps (1 = global, 2 = local, 3 = local robust).
boxSize Size of the box used to compute local background/noise estimators.
gridSize Size of the grid used when interpolating the local background/noise estimators.

Filtering σ seed, σmerge Seed and merge threshold used to detect compact bright blobs in the image (e.g. σ seed = 10, σmerge = 2.5).
Kdilate Kernel size to be used when dilating bright sources.

σ smooth, Ksmooth Kernel and radius parameter to be used in image residual smoothing.
Superpixel
generation

l Superpixel size used to generate the initial superpixel partition.

β Regularization parameter controlling starting superpixel segmentation and balancing clustering spatial and
colour distance. Low β values favour spatial clustering, high β values favour colour clustering.

Saliency filter lmin/max/step Superpixel sizes to be used in multiresolution saliency computation (e.g. l = 20–60, step 10).
knn Fraction of nearest neighbour’s superpixel used in saliency estimation (e.g. knn = 10/20 per cent).

f scales
sal Fraction of salient scales required to contribute to final saliency estimation (e.g. knn = 70 per cent).

useCurvMap Flag to include (multiscale) curvature maps in saliency estimation.
useBkgMap Flag to include (multiscale) background map in saliency estimation.

useNoiseMap Flag to include (multiscale) noise map in saliency estimation.
salThrModel Method to be used for thresholding final saliency map (1 = global, 2 = local, 3 = local robust).

f
bkg
thr Global threshold parameter to tag background pixel candidates in saliency map (e.g. f

bkg
thr = 1).

f
sig
thr Global threshold parameter to tag signal pixel candidates in saliency map (e.g. f

bkg
thr = 2).

Superpixel
merging

λ Regularization parameter used in superpixel merging stage balancing appearance and edge terms when
computing superpixel dissimilarities. Low λ values (close to zero) favour intensity similarity, high λ values
(close to 1) favour edge penalization.

Edge Model Model to be used to compute superpixel edgeness (1 = Kirsch, 2 = Chan–Vese).
fmerge Fraction of top-ranked superpixels selected for merging at each hierarchy level (e.g. fmerge = 30 per cent).
ε1st,2nd

merge Maximum mutual dissimilarity tolerance used to accept a selected superpixel merging for first or second
neighbour superpixels (e.g. 5–15 per cent).

�thr Absolute dissimilarity threshold, when applied, to select/reject selected superpixel merging (�ij ≤ �thr). Low
�thr values (close to zero) imply strict superpixel similarity for merging. High �thr values relax the merging.

In practice, the first method can be safely used for bright compact
source filtering, in which the background estimation does not need
to be highly accurate. The second method should be instead pre-
ferred in the search for faint compact sources or when thresholding
extended bright sources.

The size of the sampling grid is conventionally chosen to achieve
sufficient interpolation accuracy at moderate computational cost.
Instead, the choice of the box size is often given in terms of the
beam size (e.g. 10 or 20 times larger than the synthesized beam)
and may have a considerable impact in the source extraction step:
estimates computed on a small box could be severely biased by the
presence of a source filling the box, while a box that is too large
could completely smooth out the local background/noise variations.
Huynh et al. (2012) compared maps obtained by popular source
finders, such as SFIND (Hopkins et al. 2002), SEXTRACTOR (Bertin &
Arnouts 1996) and SELAVY (Whiting 2009; Whiting & Humphreys
2012), and investigated the optimal parameter settings for both real
and simulated data sets. However, they note that a completely auto-
mated procedure for background estimation, possibly independent
of the distribution of sources, is still of crucial importance for future
surveys.

3.2 Filtering compact sources

The presence of bright sources in the image significantly hard-
ens the extended source detection task. Therefore we implemented
a filtering stage to remove them, based on the following steps.
Blobs of connected pixels are first extracted from the image as-
suming a flood-filling procedure similar to that carried out in the
AEGEAN (Hancock et al. 2012) and BLOBCAT (Hales et al. 2012) source
finders. A high seed threshold above the computed background is

assumed (e.g. 10σ ), and pixels are aggregated down to a merge
threshold (e.g. 2.6σ ). Each detected blob is subjected to a further
search to identify nested blobs. These are extracted by threshold-
ing the image curvature map κ , obtained by convolving the image
with a Laplacian of Gaussian (LoG) kernel, at some pre-specified
threshold level (e.g. κ >0) or adaptively. A two-level hierarchy of
blobs is finally obtained.

A set of morphological parameters (e.g. contour parameters,
moments, shape descriptors, etc.) is computed over the detected
blobs and selection cuts are applied to identify point-like candidate
sources. For example, blobs with a number of pixels that are too
large or with an anomalous elongated shape typically fail to pass
the point-like cut.

Blobs tagged as ‘point-like’ are removed from the input image
using a morphological dilation operator with configurable kernel
shape (e.g. elliptic or squared) and size, as suggested in Peracaula
et al. (2015), and replaced with a random background realization. A
kernel size larger than five pixels was assumed to prevent the source
halo pixels further affecting the residual image.

3.3 Segmentation algorithm

We developed a segmentation algorithm for extraction of extended
sources, based on a superpixel segmentation algorithm followed by a
hierarchical clustering stage to aggregate similar segments into final
candidate source regions. The algorithm steps are described below
and a summary of the relevant algorithm parameters is reported in
Table 1.

(i) Initialization. Compute a set of filtered images to be used
during the clustering stage, namely the image curvature κ and

MNRAS 460, 1486–1499 (2016)
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1490 S. Riggi et al.

an edge-sensitive map ψ . The latter can be alternatively obtained
by convoluting the input image with a set of Kirsch filters oriented
along different directions or as the result of the Chan–Vese contour
finding algorithm (Chan & Vese 2001).

(ii) Superpixel segmentation. In this stage, the image is over-
segmented into NR connected regions or superpixels using flux and
spatial information as input observables. With this aim, we made use
of the simple linear iterative clustering (SLIC) algorithm developed
by Achanta et al. (2012), which uses the k-mean algorithm to cluster
pixels according to an intensity and spatial proximity measure.
Segmentation is controlled by a set of input parameters, such as
the desired superpixel size l, typically fixed to the smallest detail
to be distinguished (e.g. close to the beam size to detect compact
sources or larger to search for extended sources), the minimum
number of pixels in a region (Nmin ) and a regularization parameter
β balancing spatial and intensity clustering in the distance measure
Dij between a pixel i and a superpixel centre j:

Dij =
√

D2
ij ,c +

(
β

l × l

)2

D2
ij ,s . (1)

Here, Dij, c and Dij, s are the intensity and spatial Euclidean distances
between pixel i and superpixel j. Higher β enhances the spatial prox-
imity and favours more compact superpixels in the initial partition.
In turn, lower β favours clustering in intensity and superpixels with
less regular shapes but adhering more tightly to the object contours.
For each region i, an appearance parameter vector
xi = (μi, σi, μi,κ , σi,κ ) is computed, with μi and μi, κ denot-
ing, respectively, the mean of flux and curvature of pixels
belonging to region i, while σ i and σ i, κ are their standard
deviations. With this parameter choice, the computation and update
of the region parameters after a merging can be done iteratively in
a very fast way, namely without partially sorting the region pixel
vector as in the case of median and MAD estimators.

(iii) Saliency map estimation. A saliency map is estimated in this
step to enhance significant objects in the input image with respect to
the background. Following Zhang & Ni (2013), a saliency estimator
Si is computed for each region as

Si = 1 − exp

⎛
⎝− 1

K

K∑
j=1

δij

⎞
⎠ , δij = dij,c

1 + dij,s

, (2)

where dij, c is the Euclidean distance between appearance vectors
xi and xj of region i and j, and dij, s is the distance between their
centroids. The sum is computed over the K nearest neighbours of
region i, typically 10 or 20 per cent out of the total number of regions.
Salient objects are likely to have similar pixels more confined in
space compared to similar pixels belonging to the background,
which are more spatially spread in the image. To detect salient
features at different scales, we combined saliency maps computed
at different resolutions (e.g. corresponding to initial partitions with
different superpixel sizes). Finally, multiresolution saliency maps
are combined with the computed local noise and background maps,
which are found to be also sensitive to the diffuse emission. A
saliency map with almost full pixel resolution is finally determined.

(iv) Superpixel tagging. Each pixel i is tagged as a back-
ground/object/untagged candidate if its saliency Si is within some
adaptive threshold levels:

Si =

⎧⎪⎨
⎪⎩

background Si < S
bkg
thr

object Si > S
sig
thr

untagged otherwise

. (3)

Different saliency thresholding approaches are possible. One of
the most used in saliency studies (Achanta et al. 2009; Perazzi
et al. 2012; Zhang & Ni 2013; Kim et al. 2014) assumes a global
adaptive threshold of the kind S

bkg,sig
thr = f

bkg,sig
thr × 〈S〉, where 〈S〉 is

the average (or median) saliency of the map and f is a numerical
factor (e.g. f = 1 for the background and f = 2 for the signal; Achanta
et al. 2009; Zhang & Ni 2013). After several tests performed on
different maps, we obtained optimal results by combining different
global threshold measures:

S
sig
thr = max

{
fsig
thr × 〈S〉, min

{
SOtsu

thr , Svalley
thr

}}
(4)

Here, SOtsu
thr is the threshold level computed through the Otsu method

(see Sezgin & Sankur 2004 for a review of thresholding methods)
and S

valley
thr is the threshold corresponding to the first valley detected

in the pixel saliency histogram. The threshold level factor f
sig
thr is

chosen as a trade-off between the false detection rate and object de-
tection efficiency. The alternative approach, more computationally
expensive, is to employ the local adaptive thresholding method used
also for compact source extraction with or without outlier rejection.
Superpixels are finally tagged as background, object or untagged
candidates according to the majority of their pixel tags.

(v) Superpixel graph. Identify first- and second-order neighbours
to each region i = 1, . . . , NR and build a corresponding link graph
as described in Bonev & Yuille (2014). By first-order neighbours,
we denote the regions surrounding and sharing a border with region
i. For each region link i − j in the graph, compute an edgeness
Eij parameter related to the amount of edge present on the shared
border between region i and j. For first-order neighbours, this is
estimated by taking the average of ψ over the pixels located on the
shared boundary, while for second-order neighbours, it assumes the
largest value present in the ψ map.
Let us consider an asymmetric dissimilarity measure �ij between
neighbour regions i and j given by

�ij = (1 − λ)d(xi , xi∪j ) + λEij , (5)

where d( ·, ·) is the Euclidean distance between feature vectors,
Eij is the edgeness parameter and λ is a regularization parameter
balancing distance and edgeness weights in �ij.
The above measure expresses the change of feature vector xi caused
by a potential merging with region j, which is favoured when the
distance between feature vectors is small and penalized when there
is a border in between the two regions. Note that �ij �= �ji. Compute
the adjacency matrix A of the graph with elements aij,

aij = �−1
ij∑

j �−1
ij

, (6)

properly normalized to express a transition probability from node i
to j.

(vi) Superpixel merging. Following Ning et al. (2010) and Zhang
& Ni (2013), merge superpixels on the basis of a maximum similar-
ity criterion by iterating the following steps until no more merging
is possible:

(a) merge untagged regions to candidate background regions if
their similarity is maximal among neighbours’ similarities;

(b) adaptively merge untagged regions if their similarity is max-
imal among neighbours’ similarities.

Untagged regions shrink during the previous stage, while back-
ground regions grow. Signal-tagged regions are not affected in the
previous stages. The superpixel parameter vector and graph (neigh-
bour links, dissimilarity/adjacency matrix) are updated after each

MNRAS 460, 1486–1499 (2016)
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Extended source detection in the SCORPIO survey 1491

iterated merging stage. When no more merging is favoured, all the
remaining untagged regions are labelled as signal candidates. This
stage always converges to assign all regions to either background
or signal.
A suitable superpixel merging order for each of the steps described
above is determined as in Bonev & Yuille (2014) using the GOOGLE

PAGERANK algorithm (Brin & Page 1998) on the transition matrix A,
that is solving the following equation:

p = (1 − d)e + d AT p. (7)

Here, p = (p1, p2, . . . , pNR ) is the desired vector with rank values
(the principal eigenvector of A), d is the damping factor, which can
be set to a value between 0 and 1 (e.g. d = 0.85 as in Brin & Page
1998; Page et al. 1999), and e is a column vector of all ones. The
equation is solved by using the power iteration method (Golub &
Van Loan 1983). p is sorted and allows us to select nodes with
higher ranks for merging.

(vii) Source selection. In this step, sources are identified from the
collection of signal candidate regions selected in the previous stage.
Following Bonev & Yuille (2014), the most similar signal regions
are hierarchically clustered if their mutual dissimilarities (�ij, �ji)
are within a pre-specified tolerance. Only a percentage (e.g. 30 per
cent) of top ranked merging are allowed at each clustering iteration.
A practical criterion for the merging is allowing first neighbours to
always merge (e.g. a sort of flood-fill approach over superpixels)
and assuming a tolerance for second-order neighbours. Region pa-
rameter vectors and the dissimilarity/adjacency matrix are updated
at each iteration stage and stop conditions are checked. If no regions
are merged at the current hierarchy level or the remaining number
of regions is below a specified threshold, then the algorithm stops
and the final segmentation is returned to the user; otherwise, a new
iteration is started.

(viii) Post-processing. Some post-processing stages can be per-
formed on the detected sources. A first step uses the hierarchi-
cal clustering approach described above to identify similar re-
gions within each source and to generate a list of nested sources
one level down in the source hierarchy. Further, following Yang,
Kpalma & Ronsin (2008), a number of statistical and morphology-
descriptor parameters are computed over the source contour and/or
its pixel distribution to be eventually employed in a source classi-
fication stage. Standard parameters include bounding box/ellipse,
image/contour moments and roundness/rectangularity estimators.
More complex parameters, such as Fourier descriptors (FDs; Zhang
& Lu 2003), Hu (Hu 1962) and Zernike moments (Singh & Walia
2011), can be computed and supplied to the user.

3.4 Algorithm implementation

The described algorithms have been implemented in a C++ soft-
ware library, dubbed CAESAR (Compact And Extended Source Auto-
mated Recognition), allowing image filtering, background estima-
tion, source finding and image segmentation starting from images
in FITS or ROOT format. The library is mainly based on the ROOT

(Brun & Rademakers 1997) and R (R Core Team 2015) frameworks
for statistical objects and methods and on the OpenCV library
(Bradski 2000) for some of the image filtering algorithms. The
source finding and segmentation algorithms have been developed
from scratch along with some of the employed filtering stages. Fu-
ture developments include the algorithm fine-tuning and optimiza-
tion and further design activities for ease of deployment in a dis-
tributed computing infrastructure and integration within the pipeline

frameworks of next-generation telescopes. Public distribution is
planned once optimization steps are carried out.

4 A P P L I C AT I O N TO SC O R P I O P RO J E C T DATA

4.1 Sample fields

To test the designed algorithm, we considered four selected fields
from the SCORPIO map in which several extended structures are
present along with compact sources. The map is built as described
in Paper I using data observed with the ATCA 0.75A array config-
uration in combination with data observed with the ATCA EW367
configuration, in which shorter baselines are present. The effective
frequency range of the radio data used is 1.4–3.1 GHz. The sample
fields, hereafter denoted fields A–D, are shown in Fig. 2, and some
details are reported below.

(i) Field A (Fig. 2a). Field A (1000×1000 pixels) is centred
on the [DBS2003] 176 galactic stellar cluster (l = 343.◦4830, b
= −00.◦0380, angular size = 1.45 arcmin). Two bubble objects,
S16 and S17 (Churchwell et al. 2006), are associated with the
cluster but only S17 is observed in the radio domain. Two bright
point-like radio sources (SCORPIO1_320 and SCORPIO1_300),
already known objects in radio, were identified in Paper I. SCOR-
PIO1_300 is located within the S17 bubble and has peak flux
around 0.04 Jy beam−1. The brighter SCORPIO1_320 (peak flux
∼0.14 Jy beam−1) has been tentatively classified as a massive young
stellar object (MYSO) candidate (Urquhart et al. 2007).

(ii) Field B (Fig. 2b). Field B (1600×1850 pixels) is centred
on the supernova remnant (SNR) G344.7–0.1, located adjacent to
the high-energy γ -ray source HESSJ1702–420 (see Giacani et al.
2011). Close to the SNR, in the north-east region of the image,
another extended emission is present and most probably associated
with the MSC 345.1–0.2 SNR candidate (l = 345.◦062, b = −0.◦218,
according to the MOST MSC survey at 843 MHz; Whiteoak &
Green 1996).

(iii) Field C (Fig. 2c). Field C (1000×1000 pixels) was analysed
in detail in Paper I. Some of the extended regions of emission
present were associated with the following IRAS sources: IRAS
16566–4204, IRAS 16573–4214 and IRAS 16561–4207. The first
is recognized as a massive star formation region, while classification
is uncertain for the others.

(iv) Field D (Fig. 2d). Field D (1000 × 1000 pixels) is centred
on the faint SNR candidate MSC G345.1+0.2. Below this, a more
intense emission is present, associated with the G345.097+00.136
H II region.

An additional control field, free of extended sources and de-
noted as field E, is considered to study the algorithm response
in the absence of any expected signal and to tune the detection
thresholds. Field E is reported in Fig. 5 (left panel). This map
is built using data observed with the ATCA 0.75A array config-
uration alone. Because of the larger minimum baseline available,
extended and diffuse sources are strongly filtered out. As discussed
in Paper I, the regions of extended emission present in the test
fields A–D are in a few cases firmly associated with real source
objects or candidates. In most cases, however, no association with
known sources has been established and an artefact nature can-
not be excluded a priori without further insight and comparison to
other surveys carried out with different telescopes or wavelength
domains. As a result, no ground truth information at pixel level
is available to quantify the algorithm performances in terms of
widely used measures, such as the identification efficiency and false
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1492 S. Riggi et al.

Figure 2. Sample SCORPIO fields (A–D) selected for algorithm testing. Flux units are reported in the z-axis.

detection rate. The quality of the reconstruction will therefore be
compared to a human-driven segmentation generated for each sam-
ple image by an expert astronomer. To enhance the source/artefact
discrimination capabilities, we considered the same sample scenar-
ios as observed in the Molonglo Galactic Plane Survey (MGPS) at
843 MHz, reported in Fig. 3. The rms sensitivity over the survey is
around 1–2 mJy beam−1 and the positional accuracy is 1–2 arcsec.
The lower resolution appears evident, particularly in fields B and
C, in which some of the extended regions present in SCORPIO are
not fully resolved and are detected as compact sources in the source
finding stage. However, because of the lower observing frequency,
regions of extended emission are brighter and can be detected at
higher significance levels. Furthermore, it is unlikely that the same
imaging artefacts appear in both surveys, which are conducted with
different telescopes. Thus, common emission features can be con-
sidered as real with a high degree of confidence.

4.2 Results

We applied the designed segmentation algorithm to the selected
test fields described in Section 4.1. Multiple runs were performed
under different choices of the algorithm parameters. The qual-
ity of the segmentation was visually inspected against the human
segmentation and a suitable choice of the algorithm parameters

selected on the basis of the maximum number of expected objects
detected in all test fields at the corresponding minimum false detec-
tion rate.

A minimum region size l for the initial segmentation equal to l ∼ 4
× beam (equivalent to l = 20 pixels) was considered. Smaller values
(e.g. l = 10 pixels), comparable to the beam size, were found to be
too sensitive to small-scale structures (residual compact emission,
artefacts) in the image and thus provide noisy segmentation results.
Larger values (e.g. l = 30–60 pixels) were also investigated. As
l increases, small-scale details of the extended sources may be
smoothed out. This does not represent an issue for fields A and B
in which the extended emission scale is larger by a factor of 4–5
compared to the minimum region size. Furthermore, a larger value
of l favours the merging of artefacts in the background region (e.g.
in field B).

The regularization parameter β, controlling initial over-
segmentation, was studied. Different values were considered
(β = 0.01, 1, 10, 100) in correspondence to all other scanned pa-
rameters. Results were found comparable for β = 0.01–1 while for
values above β = 10, the superpixels start to assume very compact
shapes and do not fit well to object boundaries.

The saliency maps computed for the SCORPIO sample fields
using a multiresolution range of l = 20–60 pixels (step 10 pixels),
in combination with background and noise maps, are shown in the
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Extended source detection in the SCORPIO survey 1493

Figure 3. Sample fields (A–D) selected for algorithm testing as observed in the Molonglo Galactic Plane Survey. Flux units are reported in the z-axis.

left panels of Fig. 4. It can be noted how the faint diffuse emission,
previously hardly detectable without manually adjusting the map
contrast, is significantly enhanced over the background after the
saliency filter. The filter mostly preserves the expected object con-
tours and slightly smooths out small-scale details. A thresholding
procedure on these saliency maps provides the initial signal and
background markers for the following algorithm stages. Suitable
values of the global signal threshold factor f

sig
thr were searched over

all test samples. The choice of the threshold level was mainly driven
by field D and control field E and optimal values were found in the
range 2.5–2.8. Higher values (up to 3.0) can be given to other fields
at the cost of missing parts of the faint SNR source in field D and
of the large diffuse emission in field C. Overall, we have found that
the thresholded saliency map alone already provides a reasonable
source detection. It is also worth observing that saliency maps may
constitute a valid input for different algorithms.

Different choices of the similarity regularization parameter λ

were investigated: λ = 0, 0.1 and 0.5. Results obtained with
λ = 0.1 and 0.5 are overall comparable, with slightly better re-
sults obtained with λ = 0.5, while worse results are obtained with
λ = 0. This analysis demonstrates that incorporating an edge in-
formation in the algorithm improves the segmentation quality, even
though edges of radio objects are considerably softer than in natural
images.

The results of the segmentation stage are reported in the right
panels of Fig. 4 for the four tested fields assuming l = 20 pixels,
β = 1 and λ = 0.5. Each segmented region is coloured according
to the mean of its pixel fluxes. The human segmentation is super-
imposed and is shown with solid white contours. As can be seen,
known objects and regions of diffuse emission are all identified
and kept for later post-processing. The algorithm, at least with this
choice of parameters, is also sensitive to other faint diffuse emis-
sions, which were not identified in the human segmentation. After a
deeper inspection, some of these were clearly attributed to imaging
artefacts present in the input map, particularly in field B in which
a poorly cleaned bright object outside the studied field pollutes the
entire map. For the remaining objects, the nature remains unclear
even after a visual inspection. This kind of artefact represents a
limitation in current SCORPIO map release, and can be removed
from our analysis by increasing the threshold levels in the saliency
map, at the cost of affecting source detection, especially in fields C
and D.

In Fig. 5 (right panel), we report the results obtained over test
field E using the same algorithm parameters selected for fields A–D.
The left panel shows the input map while the right panel the map
given to the segmentation algorithm after the compact source filter-
ing and smoothing stage. As desired, no signal markers are found in
the saliency map and thus no extended source detection is reported.
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1494 S. Riggi et al.

Figure 4. Segmentation results obtained for the test fields A–D (from top to bottom) assuming l = 20 and β = 1 (see text). Left: saliency maps normalized
to range [0, 1]. Right: segmentation maps. Each segmented region is coloured in the plot according to the mean of its pixel fluxes in mJy beam−1 units. The
white contour lines correspond to a manual segmentation generated by an expert astronomer.

An example of post-processing analysis, carried out for some
relevant sources present in the test fields, is reported in Fig. 6. The
top panels show the identified sources (solid black line contours)
with nested components detected using two different methods. Solid

white line contours are obtained by thresholding a multiresolution
saliency map computed over source pixels. Dashed white line con-
tours are produced by a multiscale blob detector approach, combin-
ing Laplacian of Gaussian (LoG) image filters at different scales.
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Extended source detection in the SCORPIO survey 1495

Figure 5. Left: Sample SCORPIO field E selected for algorithm testing. Flux units are reported in the z axis; Right: Residual map, normalized to range [0,1],
obtained after applying point-like source and smoothing filtering stages to the input map.

Figure 6. Top panels: sample segmented source images, normalized to range [0, 1], in fields B, C and D (solid black contours). White contours represent
nested regions selected with a multiresolution saliency-based method (solid lines) and with a multiscale blob detector (dashed lines). Bottom panels: Zernike
moments up to order n = 4 computed over the segmented sources shown in the upper panels (black contoured area).

Other analyses are possible with the designed algorithm (e.g. run-
ning the hierarchical clustering over the source region to identify
the most similar areas), but are not shown here.

As discussed in Section 3.3, a set of parameters can be computed
for each detected source, even the nested sources. As an example,
we report in the bottom panel of Fig. 6 the set of Zernike moments
computed for the three sources up to the fourth order. Note how
the moments are sensitive to the source morphology and can, in
principle, be considered for classification studies in combination

with other computed parameters (although not in this paper). A
study of the suitable set of parameters and their robustness to noise
is planned using simulated data.

4.3 Application to data at different wavelengths

To evaluate the results obtained on radio data collected at different
wavelengths and detector resolutions/sensitivities, we considered
the same test scenarios as observed in the MGPS at 843 MHz,
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1496 S. Riggi et al.

shown in Fig. 3. We applied our method to the sample Molonglo
fields using the same parameters considered in the analysis of the
SCORPIO fields, with the following exceptions related to the lower
resolution and size of the Molonglo maps. Smaller values of the
superpixel sizes (l = 5–10 pixels) can be assumed with respect to the
SCORPIO maps, in which we have considered a minimum value of
l = 20 pixels. Saliency maps have therefore been computed starting
from the chosen minimum superpixel size up to a smaller maximum
scale value compared to that assumed in SCORPIO maps. A less
aggressive initial smoothing filter is also assumed in this case. All
the other algorithm parameters are left unchanged. The results are
reported in Fig. 7. Some of the extended sources present in the field
are not resolved and are detected as compact sources in the pre-
filtering stage. The white contours shown in the plots are therefore
relative to the detectable extended sources. As can be seen, all the
known sources are detected with high fidelity when compared to the
superimposed human segmentation. Additional regions of diffuse
emission are also detected. It is unclear at present whether they are
real or, most probably, reconstruction artefacts. Overall, the results
demonstrate that the method is flexible enough to be used also with
different data, with a minor tuning of parameters driven by the data
itself, mainly sensitivity and resolution.

4.4 Results with different algorithms

It is valuable to consider what can be achieved on SCORPIO ob-
served fields with other existing algorithms. It would indeed be
useful to carry out such a test, as many of the available algorithms
were tested with less-sensitive radio data or benchmarked against
simulated data neglecting the real background behaviour and the
Galactic plane diffuse emission.

Four different methods were considered and tested. The first two,
AEGEAN (Hancock et al. 2012) and BLOBCAT (Hales et al. 2012), use
a flood-fill algorithm to detect blobs in the image, starting from
pixels above a seed threshold σ seed (σ seed = 5) with respect to the
background and aggregating adjacent pixels above a second lower
threshold σ merge (σ merge = 2.6). Blobs are finally deblended using
curvature information. Background and noise maps were computed
using the BANE tool distributed within the AEGEAN source finder.
A third method, adopted by Peracaula et al. (2011), searches for
blobs on the SWT of a residual image, obtained from the input map
by replacing bright compact sources with a random background
estimate. We implemented this method from scratch. Finally, an
implementation of the Chan–Vese active contour algorithm (Chan
& Vese 2001) was considered and tested over the sample data.
The method iteratively evolves an initial contour until convergence
on the boundaries of the foreground region. Contour evolution is
done by seeking a level set function that minimizes a fitting energy
functional depending on a set of input parameters.

In Fig. 8, we report the sources detected by the four methods
(from top to bottom) in fields B (left panels) and D (right panels) in
comparison with the human segmentation shown with solid white
contours. AEGEAN and BLOBCAT results are comparable. As expected,
both algorithms were found to perform very well to detect bright
and faint compact sources, including blended sources, but they are
biased, by design, against extended sources. A 5σ threshold was
considered for source detection with the wavelet method on two
different scales J = 5 and 6. In these conditions, most of the extended
bright sources present in the fields can be detected. Fainter features,
such as parts of the SNRs or diffuse regions, cannot be well detected,
at least at the specified significance level.

The Chan–Vese algorithm was tested over the residual image
under different choices of parameters and using a simple circular
level-set as the initial contour. A pre-smoothing stage is applied to
the input residual image. Contours surrounding areas of negative
excesses with respect to the background level were removed from
the set of final detected contours. As can be seen, the extended
source features missed by the other algorithms can be extracted
with high accuracy compared to the human segmentation. Some
imaging artefacts are also detected along with real sources even
with the optimal choice of the Chan–Vese parameters. Overall, the
Chan–Vese method was found to outperform the other three tested
algorithms in fully detecting extended objects.

In Fig. 9, we compare the integrated flux of the extended sources
present in the four fields A–D estimated with three different methods
(CAESAR, black dots; Chan–Vese, red squares; wavelet method at
scale J = 5, blue triangles) as a function of the flux estimated using
the human-driven segmentation. A total of 30 source candidates
were identified, hereafter denoted as the reference set. Data are
reported in the plot for each algorithm in case of source identification
and cross-match found with the reference set. As can be seen, the
estimated fluxes closely follow the reference, the observed spread
in flux being regarded as a measure of the source reconstruction
accuracy contribution to the total flux uncertainty. Overall, better
results are obtained with the CAESAR and Chan–Vese algorithms,
which are able to detect fainter sources with respect to the wavelet
method and achieve a better accuracy in flux estimation.

We are aware that we have not exhausted the list of all possible
algorithms for extended source extraction and that deeper tuning is
needed for the three tested algorithms before drawing firm conclu-
sions on their suitability for our goals. For instance, a more refined
initialization strategy is desired in the Chan–Vese method, together
with a finer exploration of the parameter space. Moreover, it is
known that the two-level assumption (foreground/background) at
the basis of the standard Chan–Vese algorithm may not be accurate
for scenarios in which a large variation of intensity levels is present.
New active contours algorithms (Vese & Chan 2002; Yang, Zhao
& Wu 2013), overcoming some of the standard Chan–Vese limi-
tations, appeared recently in the literature and could be worthy of
consideration. However, we expect that none of the methods will
perform accurately over all the presented images and that a combi-
nation of different techniques is probably required at the very end.
This motivated the development of a completely different approach
as reported in this paper.

5 SU M M A RY

We have described in this paper a new algorithm for the detection of
extended sources in radio maps, designed for the SCORPIO project
and for next-generation radio surveys. The algorithm was tested with
real radio data observed in the SCORPIO and Molonglo surveys and
compared with existing algorithms. The achieved performances are
found comparable or even superior to other approaches followed in
the literature. The novel points introduced are the following:

(i) a new procedure for computing the background in presence
of extended emission;

(ii) an efficient filter to enhance diffuse emission, based on com-
pact bright source removal, smoothing and saliency estimation;

(iii) a flexible framework providing rich information for post-
processing analysis and relaxing some of the limiting requirements
used for compact source detection (e.g. pixel adjacency)
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Extended source detection in the SCORPIO survey 1497

Figure 7. Segmentation results obtained for the Molonglo sample fields A–D (from top to bottom) assuming l = 5 and β = 1. Left: saliency maps normalized
to range [0, 1]. Right: segmentation maps. Each segmented region is coloured in the plot according to the mean of its pixel fluxes in mJy beam−1 units. The
contours shown with solid white lines correspond to a manual segmentation generated by an expert astronomer.

The results obtained with real data are promising and motivate
further work both on the data side and on the algorithm side.

For this purpose, a new release of the SCORPIO map, with im-
proved cleaning procedure and data flagging applied, is in progress.

Preliminary results on the studied fields show that many of the arte-
facts present in the first data release are now properly removed.
Further, a campaign of single-dish measurement in the SCORPIO
field is already scheduled to improve the map response to extended
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1498 S. Riggi et al.

Figure 8. Source finding results obtained with three different algorithms over field B (left panels) and field D (right panels) compared to the human segmentation
(solid white contours). Top: results obtained with the AEGEAN (dotted green contours) and BLOBCAT source finders (dashed red contours). Center: results obtained
with the Chan–Vese algorithm (dotted green contours). Right: results obtained with the stationary wavelet transform (SWT) method at scale J = 5 (dotted
green contours) and J = 6 (dashed red contours).

objects beyond the limits of the ATCA telescope. Source finding
will therefore largely benefit from these improved maps.

At the same time, simulation activities were started with the
aim of generating extended source mock scenarios with ground

truth available at pixel level to study the achieved source detection
efficiency and contamination rate with realistic noise conditions.

We are currently working on possible significant improvements
also on the algorithm side, both at code and at method level. Among
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Extended source detection in the SCORPIO survey 1499

Figure 9. Integrated fluxes S of extended sources in the test fields
A–D, reconstructed with three different algorithms (black dots, CAESAR; red
squares, Chan–Vese; blue triangles, wavelet transform J = 5), as a function
of the human-driven segmentation flux Sh.

these, improving saliency estimation and resolution has become an
active field of development in recent works (see Perazzi et al. 2012;
Cheng et al. 2015; Borji et al. 2014; Shi et al. 2015). A proper
combination of different algorithms could be a viable solution to
decrease the spurious detection rate. Suitable criteria for combining
nearby candidate sources are another aspect to be investigated in
detail.

The current algorithm implementation is not optimized for large
maps (e.g. the full SCORPIO or expected ASKAP fields), as it
still requires large computation time (e.g. from a few minutes to
∼15–20 min depending on image size) and memory requirements
even on a single field, mainly related to the superpixel similar-
ity matrixes. A new optimized version, also designed for parallel
and/or distributed processing, is therefore planned, possibly compli-
ant with ASKAP EMU software pipeline requirements in terms of
input/output products to be supported, employed technologies and
processing strategies (Cornwell et al. 2011; Chapman et al. 2014).
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