3,358 research outputs found

    Platform Competition: A Systematic and Interdisciplinary Review of the Literature

    Get PDF
    Over the past three decades, platform competition—the competition between firms that facilitate transactions and govern interactions between two or more distinct user groups who are connected via an indirect network—has attracted significant interest from the fields of management and organizations, information systems, economics, and marketing. Despite common interests in research questions, methodologies, and empirical contexts by scholars from across these fields, the literature has developed mostly in isolated fashion. This article offers a systematic and interdisciplinary review of the literature on platform competition by analyzing a sample of 333 articles published between 1985 and 2019. The review contributes by (a) documenting how the literature on platform competition has evolved; (b) outlining four themes of shared scholarly interest, including how network effects generate “winner-takes-all” dynamics that influence strategies, such as pricing and quality; how network externalities and platform strategy interact with corporate-level decisions, such as vertical integration or diversification into complementary goods; how heterogeneity in the platform and its users influences platform dynamics; and how the platform “hub” orchestrates value creation and capture in the overall ecosystem; and (c) highlighting several areas for future research. The review aims to facilitate a broader understanding of the platform competition research that helps to advance our knowledge of how platforms compete to create and capture value

    A three-by-three matrix spectral problem for AKNS hierarchy and its binary Nonlinearization

    Full text link
    A three-by-three matrix spectral problem for AKNS soliton hierarchy is proposed and the corresponding Bargmann symmetry constraint involved in Lax pairs and adjoint Lax pairs is discussed. The resulting nonlinearized Lax systems possess classical Hamiltonian structures, in which the nonlinearized spatial system is intimately related to stationary AKNS flows. These nonlinearized Lax systems also lead to a sort of involutive solutions to each AKNS soliton equation.Comment: 21pages, in Late

    Longitudinal high-density EMG classification: Case study in a glenohumeral TMR subject.

    Get PDF
    Targeted muscle reinnervation (TMR) represents a breakthrough interface for prosthetic control in high-level upper-limb amputees. However, clinically, it is still limited to the direct motion-wise control restricted by the number of reinnervation sites. Pattern recognition may overcome this limitation. Previous studies on EMG classification in TMR patients experienced with myocontrol have shown greater accuracy when using high-density (HD) recordings compared to conventional single-channel derivations. This case study investigates the potential of HD-EMG classification longitudinally over a period of 17 months post-surgery in a glenohumeral amputee. Five experimental sessions, separated by approximately 3 months, were performed. They were timed during a standard rehabilitation protocol that included intensive physio- and occupational therapy, myosignal training, and routine use of the final myoprosthesis. The EMG signals recorded by HD-EMG grids were classified into 12 classes. The first sign of EMG activity was observed in the second experimental session. The classification accuracy over 12 classes was 76% in the third session and ∌95% in the last two sessions. When using training and testing sets that were acquired with a 1-h time interval in between, a much lower accuracy (32%, Session 4) was obtained, which improved upon prosthesis usage (Session 5, 67%). The results document the improvement in EMG classification accuracy throughout the TMR-rehabilitation process

    Estimation of latent variable models for ordinal data via fully exponential Laplace approximation

    Get PDF
    Latent variable models for ordinal data represent a useful tool in different fields of research in which the constructs of interest are not directly observable. In such models, problems related to the integration of the likelihood function can arise since analytical solutions do not exist. Numerical approximations, like the widely used Gauss Hermite (GH) quadrature, are generally applied to solve these problems. However, GH becomes unfeasible as the number of latent variables increases. Thus, alternative solutions have to be found. In this paper, we propose an extended version of the Laplace method for approximating the integrals, known as fully exponential Laplace approximation. It is computational feasible also in presence of many latent variables, and it is more accurate than the classical Laplace method

    Interplay among critical temperature, hole content, and pressure in the cuprate superconductors

    Full text link
    Within a BCS-type mean-field approach to the extended Hubbard model, a nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered, in good agreement with the celebrated non-monotonic universal behaviour at normal pressure. Evaluation of T_c at higher pressures is then made possible by the introduction of an explicit dependence of the tight-binding band and of the carrier concentration on pressure P. Comparison with the known experimental data for underdoped Bi2212 allows to single out an `intrinsic' contribution to d T_c / d P from that due to the carrier concentration, and provides a remarkable estimate of the dependence of the inter-site coupling strength on the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other required macros included; to be published in Phys. Rev. B (vol. 54

    Invariant, super and quasi-martingale functions of a Markov process

    Full text link
    We identify the linear space spanned by the real-valued excessive functions of a Markov process with the set of those functions which are quasimartingales when we compose them with the process. Applications to semi-Dirichlet forms are given. We provide a unifying result which clarifies the relations between harmonic, co-harmonic, invariant, co-invariant, martingale and co-martingale functions, showing that in the conservative case they are all the same. Finally, using the co-excessive functions, we present a two-step approach to the existence of invariant probability measures

    Test of mode coupling theory for a supercooled liquid of diatomic molecules.I. Translational degrees of freedom

    Full text link
    A molecular dynamics simulation is performed for a supercooled liquid of rigid diatomic molecules. The time-dependent self and collective density correlators of the molecular centers of mass are determined and compared with the predictions of the ideal mode coupling theory (MCT) for simple liquids. This is done in real as well as in momentum space. One of the main results is the existence of a unique transition temperature T_c, where the dynamics crosses over from an ergodic to a quasi-nonergodic behavior. The value for T_c agrees with that found earlier for the orientational dynamics within the error bars. In the beta- regime of MCT the factorization of space- and time dependence is satisfactorily fulfilled for both types of correlations. The first scaling law of ideal MCT holds in the von Schweidler regime, only, since the validity of the critical law can not be confirmed, due to a strong interference with the microscopic dynamics. In this first scaling regime a consistent description within ideal MCT emerges only, if the next order correction to the asymptotic law is taken into account. This correction is almost negligible for q=q_max, the position of the main peak in the static structure factor S(q), but becomes important for q=q_min, the position of its first minimum. The second scaling law, i.e. the time-temperature superposition principle, holds reasonably well for the self and collective density correlators and different values for q. The alpha-relaxation times tau_q^(s) and tau_q follow a power law in T-T_c over 2 -- 3 decades. The corresponding exponent gamma is weakly q-dependent and is around 2.55. This value is in agreement with the one predicted by MCT from the value of the von Schweidler exponent but at variance with the corresponding exponent gammaComment: 14 pages of RevTex, 19 figure

    Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules

    Full text link
    Using molecular dynamics computer simulations, we investigate the dynamics of the rotational degrees of freedom in a supercooled system composed of rigid, diatomic molecules. The interaction between the molecules is given by the sum of interaction-site potentials of the Lennard-Jones type. In agreement with mode-coupling theory (MCT), we find that the relaxation times of the orientational time correlation functions C_1^(s), C_2^(s) and C_1 show at low temperatures a power-law with the same critical temperature T_c, and which is also identical to the critical temperature for the translational degrees of freedom. In contrast to MCT we find, however, that for these correlators the time-temperature superposition principle does not hold well and that also the critical exponent gamma depends on the correlator. We also study the temperature dependence of the rotational diffusion constant D_r and demonstrate that at high temperatures D_r is proportional to the translational diffusion constant D and that when the system starts to become supercooled the former shows an Arrhenius behavior whereas the latter exhibits a power-law dependence. We discuss the origin for the difference in the temperature dependence of D (or the relaxation times of C_l^(s) and D_r. Finally we present results which show that at low temperatures 180 degree flips of the molecule are an important component of the relaxation dynamics for the orientational degrees of freedom.Comment: 17 pages of RevTex, 12 figure

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1ÎČ and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by LuminexÂź and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al

    Mechanisms Underlying Interferon-Îł-Induced Priming of Microglial Reactive Oxygen Species Production.

    Get PDF
    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-Îł (IFN Îł) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNÎł-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology
    • 

    corecore