We identify the linear space spanned by the real-valued excessive functions
of a Markov process with the set of those functions which are quasimartingales
when we compose them with the process. Applications to semi-Dirichlet forms are
given. We provide a unifying result which clarifies the relations between
harmonic, co-harmonic, invariant, co-invariant, martingale and co-martingale
functions, showing that in the conservative case they are all the same.
Finally, using the co-excessive functions, we present a two-step approach to
the existence of invariant probability measures