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a b s t r a c t

Latent variable models represent a useful tool in different fields of research in which
the constructs of interest are not directly observable. In such models, problems related
to the integration of the likelihood function can arise since analytical solutions do not
exist. Numerical approximations, like thewidely usedGauss–Hermite (GH) quadrature, are
generally applied to solve these problems. However, GH becomes unfeasible as the number
of latent variables increases. Thus, alternative solutions have to be found. In this paper, we
propose an extended version of the Laplacemethod for approximating the integrals, known
as fully exponential Laplace approximation. It is computational feasible also in presence of
many latent variables, and it is more accurate than the classical Laplace approximation.
The method is developed within the Generalized Linear Latent Variable Models (GLLVM)
framework.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Latent variable models represent a useful tool in the social sciences where the analyzed constructs cannot be directly
observed and, hence, they are not measurable. However, a set of indicators related to each unobserved variable can be
measured. These models can be defined within the Generalized Linear Latent Variable Model (GLLVM) framework [2,16],
according to which the entire set of the responses given by an individual to a certain number of items, called the response
pattern, is expressed as a function of one or more latent variables through a monotone differentiable link function. The
estimation of themodel parameters can be obtained bymeans of a full informationmaximum likelihoodmethod via the EM
algorithm, that guarantees quite accurate estimates [14,15].

The presence of the latent variables causes problems related to the integration of the likelihood function when the
observed variables are discrete, since analytical solutions do not exist. In order to overcome this drawback, numerical
approximations are usually applied. One of the most often used techniques is the classical Gauss–Hermite (GH) quadrature
[3], that provides quite good parameter estimates when many quadrature points are considered per each latent variable.
However, it becomes computationally unfeasible as the number of latent variables increases. This represents a serious
limitation for a large number of applications where several observed and latent variables are required [5].

As alternative solution to GH, the Adaptive Gauss–Hermite (AGH) quadrature has been discussed for different models
with random effects and/or latent variables [17,19,23]. In all these studies, AGH is shown to perform better than GH, also
when few quadrature points are used. Indeed, it consists of adjusting the GH nodes with the first and second moments of
the posterior density of the latent factors given the manifest variables. This allows a better approximation of the function
to be integrated. Nevertheless, the AGH is very computationally intensive, particularly when the observed variables have
many categories [4].
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An approximation technique that is not affected by the presence of high dimensional integrals is the Laplace
method [7,1], that can be viewed as a particular case of the AGH when just one abscissa is used [11]. Given its reduced
dimensionality, the Laplace method is one of the fastest techniques, since the computational burden depends only on the
calculation of the mode of the integrand [25,20,8,18]. It has been used to estimate GLLVM by [8]. These authors showed
that when this approximation is applied to maximize the likelihood function of a general GLLVM using a Newton–Raphson
scheme, the asymptotic error is of order O(p−1), with p number of items, and hence it is not directly controllable. Joe
[9] has investigated the performance of the Laplace technique for a variety of discrete response mixed models, and he
has found that it becomes less adequate as the degree of discreteness increases. A way to overcome these limitations
is to consider higher order Laplace approximations as proposed by [20]. However, this extension is quite unfeasible in
practice, in particular for GLLVM, since it involves combinations of higher (than two) order derivatives of the likelihood
function. Recently, [22] developed the Integrated Nested Laplace Approximation (INLA) to perform Bayesian inference of
latent Gaussian models with non-Gaussian observations. This procedure combines Laplace approximations with numerical
integration to provide a fast and accurate method for approximating the predictive density of the latent variables/random
effects. The approach finds a direct application in generalized linear mixed models, and its main computational advantages
are in effect when the inverse covariance matrix of the random effects is sparse and the number of parameters is
small.

When either the EM algorithm or a direct maximization of the observed data log-likelihood is used for model estimation,
an extended version of the Laplace method, called Fully exponential Laplace Approximation (FLA), can be applied. It has
been introduced and developed by [26] in the Bayesian context for approximating posterior distributions. Recently, it has
been extended by [21] to a variety of models for longitudinal continuous measurements and time-to-event data estimated
via the EM algorithm. The main idea proposed by these authors is to apply the FLA to the expected score function of the
model parameters with respect to the posterior distribution of the latent variables. With the FLA, a better approximation
of the multidimensional integrals is achieved, being the approximation error of order O(p−2). Moreover, the computational
complexity of this approach is similar to the classical Laplace method since it depends only on the numerical optimization
required to compute the mode of the integrand. In this paper, we extend the FLA to the general class of the GLLVM. In
detail, in Section 2 the GLLVM is introduced, in Section 3 the estimation problem is discussed considering the FLA. In
Section 4, a simulation study for the particular case of ordinal data is performed in order to compare the finite sample
and asymptotic properties of the AGH, classical Laplace and FLA under different conditions. Finally, Section 5 gives the
conclusions.

2. Model specification

Let y = (y1, . . . , yp) be a vector of p observed variables of any type and z = (z1, . . . , zq) be a vector of q latent variables.
The distribution f (y) of the manifest variables can be expressed as

f (y) =


Rq

g(y|z)h(z)dz, (1)

where h(z) is the density function of z and it is assumed to be normal with null mean and correlationmatrix equal to 9, and
g(y|z) is the conditional density function of y given z. Under the assumption of conditional independence of y given z, the
association among the observed variables is assumed to be wholly explained by the latent variables, so that

g(y|z) =

p
i=1

gi(yi|z). (2)

According to the GLLVM framework, each conditional distribution gi(yi|z) belongs to the exponential family and
constitutes the random component of the generalized model. More specifically,

gi(yi|z) = exp

yiθi(z) − bi(θi(z))

φi
+ ci(yi, φi)


, (3)

where θi(z) is the canonical parameter; bi(θi(z)) and ci(yi, φi) are specific functions that assume different forms according
to the different nature of yi; φi is a scale parameter. In particular,

b′

i(θi(z)) = E(yi|z) = µi(z).

The systematic component of the model is given by

ηi = τi +

q
j=1

αijzj, (4)

where τi is the intercept and αij can be interpreted as factor loadings of the model. The link between the systematic
component and the conditional mean of the random component is ηi = νi[µi(z)], where νi can be any monotonic,
differentiable link function.
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In the following, we give the specification of GLLVM for responses characterized by different degrees of discreteness, for
which the integration problem arises. That is,
• binary data:

gi(yi|z) follows a Bernoulli distribution

gi(yi|z) = π
yi
i (1 − πi)

1−yi (5)

that can be also written in the exponential form as

gi(yi|z) = exp

yi log


πi

1 − πi


+ log(1 − πi)


(6)

with

πi =

exp


τi +

q
j=1

αijzj



1 + exp


τi +

q
j=1

αijzj

 ,

θi(z) = logit(πi), bi(θi(z)) = log(1 + exp(θi(z))),
φi = 1, ci(yi, φi) = 0;

• count data:
gi(yi|z) follows a Poisson distribution

gi(yi|z) =
µi(z)yi

yi!
exp(−µi(z)) (7)

that can be also written as

gi(yi|z) = exp [yi logµi(z) − µi(z) − ln(yi!)] (8)

with

θi(z) = lnµi(z) = τi +

q
j=1

αijzj bi(θi(z)) = exp(θi(z)) = µi(z),

φi = 1, ci(yi, φi) = −ln(yi!);

• ordinal data:
gi(yi|z) follows a multinomial distribution

gi(yi|z) =

ci
s=1

(γi,s(z) − γi,s−1(z))yi,s , (9)

with ci number of categories for the item yi, yi,s = 1 if the response is in category s and 0 otherwise,

γi,s(z) = P(yi ≤ s|z) s = 1, . . . , ci defined as

γi,s(z) =

exp


τi −

q
j=1

αijzj



1 + exp


τi −

q
j=1

αijzj

 .

In this case, τi,s are category-specific intercepts such that τi,1 ≤ τi,2 ≤ · · · ≤ τi,s = +∞. The negative sign in front of the
loadings indicates that the probability to fall in high categories of yi increases as z increases.

To complete the specification of the model, denoting for simplicity γi,s = γi,s(z), we can rewrite gi(yi|z) in the
exponential form as follows

gi(yi|z) = exp


ci−1
s=1


y∗

i,s log
γi,s

γi,s+1 − γi,s
− y∗

i,s+1 log
γi,s+1

γi,s+1 − γi,s


, (10)

where y∗

i,s = 1 if the response is in category s or lower of ith variable and 0 otherwise,

θi,s(z) = log
γi,s

γi,s+1 − γi,s
, bi(θi,s(z)) = log(1 + exp(θi,s(z))),

ci(yi, φi) = 0, φi = 1.
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3. Model estimation

Model estimation is achieved by using the maximum likelihood through the EM algorithm, since the latent variables are
unknown. At this regard, we apply a full informationmaximum likelihoodmethod bywhich all the parameters of themodel
are estimated simultaneously. For the sake of simplicity, in the following we consider 9 = I.

For a random sample of size n, from Eq. (1), the observed data log-likelihood is defined as

L =

n
l=1

log f (yl) =

n
l=1

log

Rq

g(yl | zl)h(zl)dzl. (11)

The EM algorithm consists of an Expectation step (E-step), in which the expected score function E(S(ai)) of the model
parameters a′

i = (τi, αi1, . . . , αiq), i = 1, . . . , p, is computed. The expectation is with respect to the posterior distribution
h(zl | yl) of z given the observations for each individual. In the Maximization step (M-step), updated parameter estimates
are obtained by equating to 0 the expected score functions.

Louis [12] proved that the observed data score vector ∂L/∂ai is equivalent to the expected score function E(S(ai)) with
respect to h(zl | yl), so that

∂L
∂ai

= E(S(ai)) =

n
l=1


S(ai)g(yl | zl)h(zl)dzl

g(yl | zl)h(zl)dzl

=

n
l=1


∂ log g(yl | zl)

∂ai
h(zl | yl)dzl i = 1, . . . , p (12)

FromEq. (12), it can be noticed that the computation of the expected score functions involves amultidimensional integral
that cannot be solved analytically, hence numerical approximations are required. In particular, in the following, we propose
the use of the extended version of the classical Laplace approximation, that is the fully exponential Laplace method.

3.1. Fully exponential Laplace approximation method

The FLA method has been proposed for the first time by [26] in order to approximate posterior distributions in the
Bayesian context. It represents an extension of the classical Laplace approximation that, as is known, is based on the second
order Taylor expansion of the logarithm of the integrand, with the latent variables evaluated at the mode (see, among the
others, [25]).

The Laplacemethodhas the advantage of dealingwith integrals of any dimensionalitywithout introducing computational
problems but, for the general class of latent variable models discussed in this paper, it produces an approximation error of
order O(p−1), that can be reduced only increasing the number of observed variables. The FLA leads to an improvement of the
approximation error maintaining the same computational complexity as the classical Laplace method. The extension of FLA
to joint models for continuous longitudinal measurements and time-to-event data has been proposed by [21]. It requires
the computation of the following quantities

E(A(zl)) =


A(zl)h(zl | yl)dzl =


A(zl)g(yl | zl)h(zl)dzl

g(yl | zl)h(zl)dzl
(13)

that differ from (12) since A(·) are the components of the score functions S(ai) that depend on the latent variables.
The main idea of FLA is to approximate both the numerator and the denominator in Eq. (13) with the classical Laplace

method. Tierney and Kadane [25] proved that the error terms of order O(p−1) in the numerator and the denominator cancel
out, leading to a smaller error term of order O(p−2). The development of FLA is strictly related to the form of the score
function, which strongly depends on the type of data, that is on the associated member of the exponential family. For the
specific cases discussed above we obtain

• Binary data

A1,i(zl) = −
∂bi(θi(zl))

∂τi
= −πi(zl)

A2,i(zl) =
∂ log gi(yi,l | zl)

∂αi
= zl(yi − πi(zl)).

• Count data

A1,i(zl) = −
∂bi(θi(zl))

∂τi
= −µi(zl)

A2,i(zl) =
∂ log gi(yi,l | zl)

∂αi
= zl(yi − µi(zl)).
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• Ordinal data

A1,i,s(zl) = −
∂θi,s−1,l(zl)

∂τi,s
=


(1 − γi,s,l), if s = 1;
(1 − γi,s,l)

γi,s,l

(γi,s,l − γi,s−1,l)
, if s = 2, . . . , ci − 1.

A2,i,s(zl) =
∂bi(θi,s,l(zl))

∂τi,s
= (1 − γi,s,l)

γi,s,l

(γi,s+1,l − γi,s,l)
s = 1, . . . , ci − 1.

A3,i,s(zl) = −
∂ log gi(yi,s,l | zl)

∂αi
=


(1 − γi,s,l)zl, if s = 1;
(1 − γi,s,l − γi,s−1,l)zl, if s = 2, . . . , ci.

The FLA approximation can be applied only to strictly positive functions A(·). In our case, this condition is not necessarily
guaranteed since the A(·) are components of the score functions, not constrained to be positive. To overcome this problem,
the method of the moment generating function can be used. According to this approach, since the quantity exp{t ′A(zl)}
is always positive, the FLA approximation can be applied to the moment generating function M(t) = E[exp{t ′A(zl))},
with latent variables zl evaluated at the mode ẑl = argmaxzl [log g(yl | zl) + log h(zl) + t ′A(zl)]. In doing so, we get the
approximated moment generating function M̂(t). Hence, from the corresponding cumulant-generating function log M̂(t),
we obtain the approximated expected values Ê(A(zl)). These latter values are the quantities of interest, and they are given
by

Ê(A(zl)) =
∂

∂t
log M̂(t)


t=0

=
∂

∂t
log Ê[exp{t ′A(zl)}]


t=0

. (14)

Tierney et al. [26] proved (Theorem 2, p. 712) that Eq. (14) is equivalent to the following expression

Ê(A(zl)) = A(ẑl) +
∂ log det(6(t)

l )−1/2

∂t


(zl=ẑl,t=0)

+ O(p−2)

= A(ẑl) −
1
2
tr(�)


(zl=ẑl,t=0)

+ O(p−2), (15)

where

6
(t)
l = −

∂2
{log g(yl | zl) + log h(zl) + t ′A(zl)}

∂z′

l∂zl
(16)

and

� = 6−1
l {∂6

(t)
l /∂t}.

The expressions of the first derivatives of 6l with respect to t are reported in the Appendix.

3.2. EM algorithm

The steps of the EM algorithm are defined as follows:
1. Choose initial values for the parameters of the model and for the mode.
2. Compute themode ẑl, l = 1, . . . , n, by using a Newton–Raphson iterative scheme. Inmore detail, for the (m)-th iteration

ẑml = ẑ(m−1)
l − [(6

(m−1)
l )−1S(z(m−1)

l )]|
(zl=ẑ(m−1)

l ,t=0),

where 6l is the Hessian matrix defined in expression (16) and S(zl) is defined as follows

S(zl) = −
∂{log g(yl | zl) + log h(zl) + t ′A(zl)}

∂zl
. (17)

3. E-step. Compute the FLA expected values Ê(A(zl)), and the approximated expected score function Ê(S(ai)), where
i = 1, . . . , p.

4. M-step. Obtain improved estimates for the model parameters. For all of them, a Newton–Raphson iterative scheme is
used in order to solve the corresponding nonlinear maximum likelihood equations.

5. Repeat steps 2–4 until convergence is attained.

In the following section, we perform a simulation study for the model with ordinal variables reported in expression (9).
The choice of this particular model has been mainly motivated by three reasons. The first one is that ordinal data are very
diffused in analysis carried out in the social sciences. The second one is that latent variable models with ordinal data are
the most affected by computational burden due to integration problems. Finally, the FLAmethod for the model with ordinal
variables is the most complex to derive among the cases discussed in Section 2. All the technical details for the application
of FLA in presence of ordinal data are reported in the Appendix.
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Table 1
Mean, bias and MSE of the parameter estimates for AGHme , and AGHmo , Lap, and FLA in the generated data.

AGH Lap FLA
Mean Mode

% Valid samples 82 72 66 70
True Mean Bias MSE Mean Bias MSE Mean Bias MSE Mean Bias MSE

α11 = 1.03 1.37 0.34 0.63 1.47 0.44 0.61 1.17 0.14 0.21 1.02 −0.01 0.03
α21 = 1.44 1.41 −0.02 0.41 1.26 −0.18 0.34 0.82 −0.61 0.62 1.62 0.18 0.17
α31 = 2.11 2.22 0.10 0.68 1.96 −0.15 0.37 1.21 −0.90 1.04 2.31 0.20 0.33
α41 = 1.80 1.91 0.11 0.61 1.75 −0.05 0.43 1.21 −0.59 0.56 1.52 −0.28 0.15
α51 = 1.53 1.58 0.05 0.40 1.42 −0.10 0.25 1.23 −0.30 0.30 1.80 0.27 0.26
α12 = 0.00 – – – – – – – – – – – –
α22 = 2.42 1.99 −0.42 0.74 2.09 0.33 0.46 1.85 −0.57 0.57 2.01 −0.41 0.36
α32 = 1.52 1.70 0.18 0.51 1.80 0.27 0.44 1.38 −0.14 0.24 1.98 0.46 0.44
α42 = 0.75 0.76 0.01 0.49 0.93 0.18 0.35 1.37 0.62 0.56 1.01 0.26 0.12
α52 = 1.34 1.50 0.16 0.44 1.43 0.26 0.41 1.96 0.62 0.39 1.70 0.36 0.31

4. Simulation study

The properties of the FLA method in the GLLVM for ordinal data can be evaluated by performing a simulation study in
which several conditions are taken into account. The results will be comparedwith those obtainedwith the classical Laplace
(Lap) as applied by [8,9], and with the AGH quadrature. In recent years, the latter has been widely applied in latent variable
models, since it allows to obtain estimates that are as accurate as those derived by the GH technique, but using a smaller
number of quadrature points. It essentially consists of scaling and translating the classical Gaussian quadrature locations to
place them under the peak of the integrand, and two different procedures have been adopted in the literature. According to
the first one, the mode of the integrand and the inverse of the information matrix of the integrand evaluated at the mode
are computed [11,17,23]. The advantage of this approach lies in the fact that the quadrature points are not involved in these
computations. However, this method is computationally demanding since it requires numerical optimization routines and
the computation of second derivatives. Moreover, when parameter estimates are obtained by using iterative algorithms, like
in our case, the first and second order moments have to be computed at each step, hence the algorithm becomes very slow.

An alternative procedure consists of computing the posteriormeans and covariancematrices at each step of the algorithm
[19]. Although this method requires the use of quadrature points themselves, the posterior moments should better describe
the integrand in those cases in which its tails are heavier than the normal density. In the following, we show how both these
techniques work in latent variable models for ordinal data, and we compare their performances with FLA.

The software used for the analyses are Fortran 95 and R. The codes are available from the authors upon request.

4.1. Finite sample properties of the estimators

To investigate empirically the finite sample performance of the FLA, Lap and AGH, based on both the posterior mean
(AGHme) and mode (AGHmo), we generated data from a population that consists of five variables and satisfies a two factor
model. The number of categories is the same for each observed variable, and equal to 4. 500 randomsampleswere considered
with n = 200 subjects.We chose 5 quadrature points per each latent variable for both the adaptive approximations.We also
considered 7 quadrature points, but there was a little difference with 5 nodes, suggesting that the latter provides sufficient
accuracy for this example.

The population parameters were chosen in such a way that the thresholds range from −3 to 3. The factor loadings are
the following: α1 = (1.03, 1.44, 2.11, 1.8, 1.53) and α2 = (0, 2.42, 1.52, 0.75, 1.34) with not null values generated from
a log-normal distribution, and one loading fixed to 0 to get a unique solution.

Table 1 reports the mean, bias, and Mean Square Error (MSE) of the parameter estimates obtained by applying all the
techniques. The results show that the percentage of valid samples is quite high for all the procedures apart from Lap, ranging
from 66% to 82%. The FLA presents much better MSE values than those achieved by Lap, AGHme and AGHmo. The superior
performance of FLA compared with Lap is mainly due to the larger bias that characterizes the values obtained with the
classical method. This is in agreement with the findings given by [9] in the case of ordinal data. Furthermore, FLA performs
better than the quadrature techniques mainly because of a smaller variability of the estimates. Comparing the adaptive
techniques, AGHme estimates are less biased than those determined by AGHmo, and present an opposite sign of the bias
for several values of α1. On the other hand, the latter behaves better in terms of MSE values. The different performance
of the two adaptive techniques can be due to the fact that the individual posterior densities to be approximated are not
always symmetric. In latent variable models for ordinal data, [6] proved that the posterior densities asymptotically follow
a multivariate normal distribution. However, for a small number of observed variables, the integrand could be skewed, and
the numerical procedures could provide quite different results.

To analyze the shape of the individual posterior densities in the generated population, we computed measures of
multivariate skewness β1,q and kurtosis β2,q proposed by Mardia (1970). In the case of two latent variables, they are given
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Fig. 1. Individual posterior densities with different shapes (on the left side β1,2 = 0.000, and on the right side β1,2 = 0.168) in the generated population
of 200 subjects.

by

β1,2(l) = µ2
30 + µ2

03 + 3µ2
12 + 3µ2

21 l = 1, . . . , n

and

β2,2(l) = µ04 + µ40 + 2µ22 l = 1, . . . , n

with µij = E(z i1lz
j
2l), whereas z1l and z2l are the latent factors standardized with respect to the posterior densities. Mardia

(1970) also derived the asymptotic distributions of both β1,q and β2,q, and the corresponding statistical tests to evaluate the
null hypotheses H0 : β1,q = 0 and H0 : β2,q = q(q + 2), being q(q + 2) the kurtosis in q-variate normal densities.

By computing these measures for the individual posterior densities generated in this simulation study, we observed
that about 35% of these functions have a significant skewness, and a kurtosis always not significantly different from 8.
In particular, β1,2 is on average equal to 0.044 and it ranges from 0.000 to the significant value 0.168. The presence of
individual posterior densities having different shapes could justify the different behavior of AGHs and FLA. In Fig. 1, we
show two different functions obtained from our generated data. In order to better analyze the finite sample properties of
FLA and AGHs, we also generated data from two hypothetical extreme scenarios: one in which all the posterior densities are
symmetric, and another one in which a high percentage (more than 60%) of the densities are skewed. As before, we consider
five observed variables, eachwith 4 categories, satisfying a two factormodel. The results for both the populations are shown
in Table 2.

In the first scenario, the thresholds for each item are equal to −2 for the first category, 0 for the second, and 2 for the
third one, whereas the loadings are all fixed to 0.5 except one set equal to zero. In this population, all the individual posterior
densities are symmetric, with β1,2 on average equal to 0.005, and β2,2 always not significantly different from 8. As in the
previous simulation study, we generated 500 random samples with 200 subjects.

For all the samples the algorithm achieves the convergence for FLA and AGHme, and in the 96% of the cases for AGHmo. The
FLA improves a lot with respect to the previous case, with a reduction of almost one digit in the MSE values, mainly due to
smaller bias values for α2. On the other hand, both the AGH techniques provide better results in terms of bias andMSE, even
if they still performworse than FLA. We can also notice that the results provided by the two adaptive procedures are almost
the same, with an equal sign of the bias for all the estimates, and slight discrepancies due to the different computational
techniques involved. Indeed, as discussed by [19], the two procedures should provide similar results when the posterior
densities are symmetric.

In the second scenario, the thresholds for each item are equal to −1 for the first category, 0 for the second, and 1 for the
third one, whereas the loadings are fixed equal to α1 = (2.5, 2.5, 2.5, 2.5, 2.5) and α2 = (0, 1, 1, 1, 1). In this case, 65% of
the posterior densities are skewed. β1,2 ranges from 0.000 to 0.239, the latter being significantly different from zero, and it
is on average equal to 0.127. On the other hand, there is no significant kurtosis for all the subjects. The main consequence of
this high percentage of skew densities is that, for both FLA and AGHmo, a very small number of samples (26% for the former,
18% for the latter) converge properly. Hence, the results are not reliable. On the other hand, AGHme seems to be unaffected
by the different shapes of the posterior densities. Its results are more stable in terms of mean, bias, andMSE of the estimates
as well as in terms of percentage of valid samples, that also in this case is 73%.

From these results, we can argue that FLA will be superior than AGH when the majority of the posterior densities is
symmetric. In these cases, the former provides better MSE values for the estimates than the latter, mainly due to a reduced
variability in the estimates. Moreover, the bias introduced in the estimates using FLA is quite comparable with the one
in the AGH estimates. On the other hand, we have also shown that the AGHme provides more stable results, that are not
affected by the shape of the integrand. Its use is then suggested in populations characterized by a high percentage of
skew distributions. It is interesting to highlight that, even if crucial when assessing simulations in such kind of studies,
we cannot draw conclusions on the relation between the degree of dependence between items and the behavior of the
FLA. Indeed, further investigations of the shape of the individual posterior densities have highlighted that their skewness
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Table 2
Mean, bias and MSE for FLA, AGHme , and AGHmo for different scenarios in finite samples.

AGH FLA
Mean Mode

% Valid samples 90 100 100
True Mean Bias MSE Mean Bias MSE Mean Bias MSE

α11 = 0.5 0.90 0.40 0.69 0.84 0.34 0.61 0.59 0.09 0.02
α21 = 0.5 0.52 0.02 0.37 0.55 0.04 0.46 0.61 0.11 0.02
α31 = 0.5 0.47 −0.02 0.41 0.47 −0.03 0.47 0.60 0.10 0.02
α41 = 0.5 0.48 −0.02 0.42 0.55 0.05 0.60 0.60 0.10 0.02
α51 = 0.5 0.51 0.01 0.42 0.53 0.03 0.48 0.60 0.10 0.02
α12 = 0.0 – – – – – – – – –
α22 = 0.5 0.73 0.23 0.57 0.72 0.22 0.65 0.60 0.10 0.01
α32 = 0.5 0.73 0.23 0.68 0.70 0.20 0.71 0.59 0.09 0.01
α42 = 0.5 0.65 0.15 0.54 0.63 0.13 0.67 0.59 0.09 0.01
α52 = 0.5 0.72 0.22 0.58 0.68 0.19 0.56 0.59 0.09 0.02

% Valid samples 73 18 26
True Mean Bias MSE Mean Bias MSE Mean Bias MSE

α11 = 2.5 2.47 −0.03 0.31 2.34 −0.16 0.25 2.97 0.47 0.86
α21 = 2.5 2.71 0.21 0.44 2.41 −0.08 0.14 2.28 −0.22 0.25
α31 = 2.5 2.73 0.23 0.48 2.44 −0.06 0.11 2.21 −0.29 0.22
α41 = 2.5 2.71 0.21 0.36 2.57 0.07 0.19 2.28 −0.22 0.20
α51 = 2.5 2.77 0.27 0.50 2.52 0.02 0.11 2.27 −0.23 0.29
α12 = 0.0 – – – – – – – – –
α22 = 1.0 1.12 0.13 0.49 0.93 −0.07 0.38 1.92 0.92 0.93
α32 = 1.0 1.15 0.15 0.59 0.97 −0.03 0.33 1.84 0.84 0.80
α42 = 1.0 1.09 0.09 0.52 0.98 −0.02 0.34 1.91 0.91 0.89
α52 = 1.0 1.24 0.24 0.65 0.89 −0.11 0.45 1.97 0.97 0.98

also depends on the thresholds. As these latter increase, the skewness decreases for given values of the loadings. It means
that scenarios characterized by high values of thresholds and quite high values of the loadings imply high and significant
polychoric correlations between the observations and ahighpercentage of symmetric posterior densities. For example, using
the loadings selected in the second scenario of Table 2 with thresholds ranging from −3 to 3 instead of ranging from −1 to
1, the percentage of asymmetric posterior densities decreases from more than 60% to almost 15%. In this case, differently
from what is obtained for the second scenario, FLA performs very well. However, in both cases the polychoric correlations
between items are in general quite high, indicating that there is no evidence of a direct relation between the FLA behavior
and the degree of dependence between manifest variables.

4.2. Asymptotic properties of estimators

The asymptotic properties of the Laplace maximum likelihood estimators θ̂ have been derived and discussed by [21].
Under suitable regularity conditions, these authors showed that

θ̂ − θ0 = Op

max


n−1/2, p−2 ,

where θ0 denotes the true parameter value. θ̂ will be consistent as long as both n and p grow to ∞. FLA is superior than
standard Laplace method, since the latter produces estimators with an approximation error of order Op


max


n−1/2, p−1


.

On the other hand, following [11,26], it can be shown that FLA shares the same approximation error of the AGH with 5
quadrature points.

To assess the asymptotic accuracy of the FLA estimator as well as of the classical Laplace, we generated 500 random
samples with 1000 subjects from the population described in the previous section. We also applied both the adaptive
techniques, and the results are shown in Table 3.

The percentage of valid samples is quite high for all the techniques, apart from Lap, ranging from 65% to 94%. FLA has a
good performance as before with small MSE and bias values. On the other hand, both AGHs have an analogous behavior: the
MSE values are drastically reduced with respect to the finite sample situation, and the bias is small for all the parameters.

It is worth noting that again FLA performs much better than the classical Laplace approximation, also in this case for the
higher biases of the estimates obtained with the latter method. On the other hand, the bias in the AGH and FLA estimates is
quite comparable, with a slightly better performance of the former for the second factor loadings (Table 3).

To better investigate the asymptotic properties of the FLA as function not only of the number of individuals n, but also of
the number of items p, we performed a numerical study in which the performance of the FLA is compared with AGHme in
the presence of ten observed items, each of them characterized by four categories, assumed to satisfy a four factor model.
We compared FLA only with AGHme since the computational burden of this simulation is quite heavy and in the previous
study, for n = 1000,AGHme and AGHmo gave very similar results, whereas Lap performed worse than all the other methods.
Moreover, we did not consider higher dimensions to allow a direct comparison with the AGH.



S. Bianconcini, S. Cagnone / Journal of Multivariate Analysis 112 (2012) 183–193 191

Table 3
Mean, bias and MSE for AGHme,AGHmo , Lap and FLA for generated data with n = 1000.

AGH Lap FLA
Mean Mode

% Valid samples 92 94 65 90
True Mean Bias MSE Mean Bias MSE Mean Bias MSE Mean Bias MSE

α11 = 1.03 1.11 0.07 0.07 1.14 0.11 0.09 1.12 0.09 0.24 1.00 0.03 0.01
α21 = 1.44 1.41 −0.03 0.10 1.36 −0.07 0.10 0.78 −0.66 0.66 1.59 0.15 0.07
α31 = 2.11 2.08 −0.03 0.08 2.04 −0.07 0.09 1.17 −0.93 1.15 2.25 0.14 0.08
α41 = 1.80 1.82 0.02 0.11 1.79 0.01 0.13 1.08 −0.71 0.77 1.52 0.28 0.09
α51 = 1.53 1.52 −0.01 0.05 1.48 −0.05 0.06 1.19 −0.33 0.33 1.72 0.19 0.08
α12 = 0.00 – – – – – – – – – –
α22 = 2.42 2.21 −0.21 0.18 2.24 −0.18 0.19 1.86 −0.56 0.53 2.00 −0.42 0.25
α32 = 1.52 1.58 0.06 0.11 1.64 0.12 0.12 1.31 −0.21 0.32 1.88 0.36 0.18
α42 = 0.75 0.74 −0.01 0.11 0.79 0.04 0.09 1.34 0.59 0.58 0.96 0.21 0.06
α52 = 1.34 1.40 0.06 0.07 1.44 0.10 0.07 1.75 0.41 0.26 1.64 0.30 0.13

We generated 500 random samples with n = 1000 subjects. The population parameters were chosen in such a way that
the thresholds range from −3 to 3. The factor loadings are the following:

α1 = (0.38, 1.49, 1.87, 1.12, 0.47, 0.40, 0.37, 0.42, 1.14, 2.18),
α2 = (0, 0.83, 1.61, 1.69, 2.18, 0.79, 0.79, 2.54, 1.08, 0.68),
α3 = (0, 0, 1.01, 0.82, 0.19, 2.17, 0.37, 1.27, 0.90, 1.40), and
α4 = (0, 0, 0, 1.85, 0.49, 1.06, 0.39, 0.66, 0.83, 0.81)

with not null values generated from a log-normal distribution, and six loadings fixed to 0 to get a unique solution.
Table 4 reports the mean, bias, and Mean Square Error (MSE) of the parameter estimates obtained by applying the two

techniques. We can observe that a high percentage of the sample reached convergence properly. As before, the variance are
generally higher for the quadrature approximation, whereas the reverse occurs for the bias. However, FLA generally seems
to behave better than AGH in terms of MSE.

5. Discussion

This paper is concerned with the adequacy of several approximations of the likelihood function in generalized linear
latent variable models with particular reference to ordinal data. In particular, we proposed an extended version of the
Laplace method for approximating integrals, known as fully exponential Laplace approximation. Classical Laplace methods
are known towork poorly in presence of discrete response variables [9], because of the not negligible bias that characterizes
the estimates. This result has been confirmed in our study, whereas we have shown how the FLA is generally appropriate in
models for ordinal data in both finite and large samples. The comparison with the adaptive Gauss–Hermite quadrature
techniques has highlighted that in finite samples the FLA provides better results in terms of MSE values when the
majority of the posterior densities is symmetric. Indeed, for a small number of observed variables, the symmetry of the
individual posterior densities is not always guaranteed, and the percentage of skewed distributions tends to vary according
to the parameter values. When the majority of the densities are skewed, FLA and AGHmo do not achieve convergence
in most cases. On the other hand, AGHme is more stable, and it is not affected by the shape of the functions to be
approximated.

The main strength of the FLA approach is that it effectively copes with high dimensional latent structures without
increasing substantially the computational burden. This is one of the main drawbacks in the application of AGH techniques
in latent variable models. Five quadrature points can provide accurate estimates, but the computational effort increases
exponentially as the number of latent factors increases. At this regard, we have studied the performance of the FLA in
presence of two- and four-dimensional latent structures. This allowed us to analyze the asymptotic properties of all the
methods as functions of the number of both the individuals and items. In large samples, in general the FLA achieves the
same approximation of the AGHwith five quadrature points, and all the techniques behave similarly, apart from the classical
Laplace that performs worse.

The main limitation of the FLA approach is that it is not possible to control the magnitude of the approximation error of
the integral, as done in AGH by modifying the number of quadrature points. However, as discussed by [21], a virtue of the
fully exponential Laplace approximation is that it is very general, and it can be used in almost all the general linear latent
variablemodels. Overall, for latent variablemodels with ordinal data, the FLA is very adequate to approximate the likelihood
function, and it should be considered as a valid alternative to adaptive Gaussian quadrature techniques.

Further lines of research will be oriented to compare the performance of FLA with the multidimensional splines. The
latter represents a useful alternative to approximate the posterior densities [24] and to investigate the main assumptions
on the prior distribution of the latent variables that is still an open issue in the GLLVM framework [10,13].
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Table 4
Mean, bias and MSE for FLA, and AGHme , for generated data with n = 1000 and p = 10.

AGH FLA
% Valid samples 89 91
True Mean Bias MSE Mean Bias MSE

α011 = 0.38 0.43 0.05 0.01 0.40 0.02 0.00
α021 = 1.49 1.30 −0.19 0.13 1.57 0.08 0.02
α031 = 1.87 1.55 −0.32 0.38 2.32 0.45 0.28
α041 = 1.12 1.45 0.33 0.24 1.45 0.32 0.28
α051 = 0.47 0.38 −0.09 0.20 0.61 0.14 0.03
α061 = 0.40 0.36 −0.04 0.22 0.60 0.20 0.05
α071 = 0.37 0.32 −0.05 0.03 0.41 0.04 0.01
α081 = 0.42 0.23 −0.19 0.28 0.78 0.36 0.15
α091 = 1.14 1.05 −0.09 0.10 1.27 0.13 0.06
α101 = 2.18 2.39 0.21 0.16 1.96 −0.22 0.19
α012 = 0.00 – – –
α022 = 0.83 1.20 0.37 0.26 0.98 0.15 0.03
α032 = 1.61 2.06 0.45 0.56 1.86 0.25 0.12
α042 = 1.69 2.20 0.51 0.61 1.97 0.28 0.24
α052 = 2.18 1.85 −0.33 0.37 1.99 −0.19 0.05
α062 = 0.79 0.81 0.02 0.28 1.00 0.21 0.06
α072 = 0.79 0.70 −0.09 0.04 0.92 0.13 0.02
α082 = 2.54 2.24 −0.30 0.29 2.34 −0.20 0.07
α092 = 1.08 1.14 0.06 0.08 1.33 0.25 0.10
α102 = 0.68 0.89 0.21 0.33 1.24 0.56 0.43
α013 = 0.00 – – – – – –
α023 = 0.00 – – – – – –
α033 = 1.01 1.11 0.10 0.25 1.27 0.26 0.11
α043 = 0.82 1.14 0.32 0.53 1.24 0.42 0.27
α053 = 0.19 0.35 0.16 0.41 0.54 0.35 0.13
α063 = 2.17 2.15 −0.02 0.35 1.89 −0.28 0.09
α073 = 0.37 0.43 0.06 0.05 0.47 0.10 0.01
α083 = 1.27 1.39 0.12 0.37 1.32 0.05 0.02
α093 = 0.90 1.00 0.10 0.11 1.18 0.28 0.10
α103 = 1.40 1.50 0.10 0.35 1.83 0.43 0.34
α014 = 0.00 – – – – – –
α024 = 0.00 – – – – – –
α034 = 0.00 – – – – – –
α044 = 1.85 1.70 −0.15 0.33 1.42 −0.43 0.26
α054 = 0.49 0.71 0.22 0.18 0.50 0.01 0.00
α064 = 1.06 0.81 −0.25 0.53 0.91 −0.15 0.03
α074 = 0.39 0.47 0.08 0.04 0.44 0.05 0.00
α084 = 0.66 0.74 0.08 0.29 0.68 0.02 0.01
α094 = 0.83 0.66 −0.17 0.21 1.10 0.27 0.09
α104 = 0.81 0.56 −0.25 0.37 0.54 −0.27 0.10

Appendix

In order to apply the fully exponential Laplace approximation to the model for ordinal data, we have to compute the first
derivative of 6l with respect to t . At this regard, given that

6
(t)
l =

p
i=1

ci−1
s=1


αiα

′

i


−y∗

i,s,lγi,s+1,l(1 − γi,s+1,l) + y∗

i,s+1,lγi,s,l(1 − γi,s,l)


+ I −
∂2t ′A(zl)
∂z′

l∂zl

we make use of the following result

∂6
(t)
l

∂t


(zl=ẑl,t=0)

=
∂6

(t)
l

∂z
∂ ẑl
∂t


(t=0)

according to which

∂6
(t)
l

∂t


(zl=ẑl,t=0)

=

p
i=1

ci−1
s=1

αiα
′

i[y
∗

i,s,lγi,s+1,l(1 − 3γi,s+1,l + 2γ 2
i,s+1,l) +

− y∗

i,s+1,lγi,s,l(1 − 3γi,s,l + 2γ 2
i,s,l)] × αiΣ

−1
l A′(ẑl) − A′′(ẑl),

where A′(ẑl) =
∂A(zl)
∂zl


zl=ẑl

and A′′(ẑl) =
∂2A(zl)
∂z′l∂zl


zl=ẑl

.
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For the thresholds, the first-order partial derivatives result in
A′

1,i,s(zl) = αiγi,s,l(1 − γi,s,l), s = 1, . . . , ci − 1
and

A′

2,i,s(zl) = −αiγi,s,l(1 − γi,s,l) s = 1, . . . , ci − 1
for A1,i,s(zl) and A2,i,s(zl), respectively. Furthermore, the corresponding second-order partial derivatives are given by

A′′

1,i,s(zl) = −α′

iαiγi,s,l(1 − 3γi,s,l + 2γ 2
i,s,l), s = 1, . . . , ci − 1

and
A′′

2,i,s(zl) = α′

iαiγi,s,l(1 − 3γi,s,l + 2γ 2
i,s,l) s = 1, . . . , ci − 1.

As for the loadings, the elements of the gradient A3,i,s(zl) with respect to the latent variables result in
∂A3,i,s(zjl)

∂zjl
=


(1 − γi,1,l)(1 + γi,1,lαijzjl), if s = 1;
(1 − γi,s,l − γi,s−1,l) + αijzjl(γi,s,l(1 − γi,s,l) + γi,s−1,l(1 − γi,s−,l)), if s = 2, . . . , ci.

∂A3,i,s(zjl)
∂zkl

=


αikzjlγi,1,l(1 − γi,1,l), if s = 1;
αikzjl(γi,s,l(1 − γi,s,l) + γi,s−1,l(1 − γi,s−,l)), if s = 2, . . . , ci

On the other hand, the elements of the corresponding Hessian matrix are given by

∂2A3,i,s(zjl)
∂z2jl

=


αijγi,1,l(1 − γi,1,l)(2 − αijzjl(1 − 2γi,1,l)), if s = 1;
αij[γi,s,l(1 − γi,s,l)(2 − αijzjl(1 − 2γi,s,l)) if s = 2, . . . , ci.
+γi,s−1,l(1 − γi,s−1,l)(2 − αijzjl(1 − 2γi,s−1,l))],

∂2A3,i,s(zjl)
∂zjl∂zkl

=


αikγi,1,l(1 − γi,1,l)(1 − αikzjl(1 − 2γi,1,l)), if s = 1;
αik[γi,s,l(1 − γi,s,l)(1 − αijzjl(1 − 2γi,s,l)) if s = 2, . . . , ci.
+γi,s−1,l(1 − γi,s−1,l)(1 − αijzjl(1 − 2γi,s−1,l))],

∂2A3,i,s(zjl)
∂z2kl

=


−α2

ikzjlγi,1,l(1 − 3γi,1,l + 2γ 2
i,1,l), if s = 1;

−α2
ikzj(γi,s−1,l − 3γ 2

i,s−1,l + 2γ 3
i,s−1,l + γi,s,l − 3γ 2

i,s,l + 2γ 3
i,s,l), if s = 2, . . . , ci.
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