109 research outputs found
Look who is calling: a comparison of genotype calling algorithms
In genome-wide association studies, high-level statistical analyses rely on the validity of the called genotypes, and different genotype calling algorithms (GCAs) have been proposed. We compared the GCAs Bayesian robust linear modeling using Mahalanobis distance (BRLMM), Chiamo++, and JAPL using the autosomal single-nucleotide polymorphisms (SNPs) from the 500 k Affymetrix Array Set data of the Framingham Heart Study as provided for the Genetic Analysis Workshop 16, Problem 2, and prepared standard quality control (sQC) for each algorithm. Using JAPL, most individuals were retained for the analysis. The lowest number of SNPs that successfully passed sQC was observed for BRLMM and the highest for Chiamo++. All three GCAs fulfilled all sQC criteria for 79% of the SNPs but at least one GCA failed for 18% of the SNPs. Previously undetected errors in strand coding were identified by comparing genotype concordances between GCAs. Concordance dropped with the number of GCAs failing sQC. We conclude that JAPL and Chiamo++ are the GCAs of choice if the aim is to keep as many subjects and SNPs as possible, respectively
ACPA: automated cluster plot analysis of genotype data
Genome-wide association studies have become standard in genetic epidemiology. Analyzing hundreds of thousands of markers simultaneously imposes some challenges for statisticians. One issue is the problem of multiplicity, which has been compared with the search for the needle in a haystack. To reduce the number of false-positive findings, a number of quality filters such as exclusion of single-nucleotide polymorphisms (SNPs) with a high missing fraction are employed. Another filter is exclusion of SNPs for which the calling algorithm had difficulties in assigning the genotypes. The only way to do this is the visual inspection of the cluster plots, also termed signal intensity plots, but this approach is often neglected. We developed an algorithm ACPA (automated cluster plot analysis), which performs this task automatically for autosomal SNPs. It is based on counting samples that lie too close to the cluster of a different genotype; SNPs are excluded when a certain threshold is exceeded. We evaluated ACPA using 1,000 randomly selected quality controlled SNPs from the Framingham Heart Study data that were provided for the Genetic Analysis Workshop 16. We compared the decision of ACPA with the decision made by two independent readers. We achieved a sensitivity of 88% (95% CI: 81%-93%) and a specificity of 86% (95% CI: 83%-89%). In a screening setting in which one aims at not losing any good SNP, we achieved 99% (95% CI: 98%-100%) specificity and still detected every second low-quality SNP
Recommended from our members
BiomarCaRE: rationale and design of the European BiomarCaRE project including 300,000 participants from 13 European countries
Biomarkers are considered as tools to enhance cardiovascular risk estimation. However, the value of biomarkers on risk estimation beyond European risk scores, their comparative impact among different European regions and their role towards personalised medicine remains uncertain. Biomarker for Cardiovascular Risk Assessment in Europe (BiomarCaRE) is an European collaborative research project with the primary objective to assess the value of established and emerging biomarkers for cardiovascular risk prediction. BiomarCaRE integrates clinical and epidemiological biomarker research and commercial enterprises throughout Europe to combine innovation in biomarker discovery for cardiovascular disease prediction with consecutive validation of biomarker effectiveness in large, well-defined primary and secondary prevention cohorts including over 300,000 participants from 13 European countries. Results from this study will contribute to improved cardiovascular risk prediction across different European populations. The present publication describes the rationale and design of the BiomarCaRE project. Electronic supplementary material The online version of this article (doi:10.1007/s10654-014-9952-x) contains supplementary material, which is available to authorized users
Comprehensive exploration of the effects of miRNA SNPs on monocyte gene expression
We aimed to assess whether pri-miRNA SNPs (miSNPs) could influence monocyte gene expression, either through marginal association or by interacting with polymorphisms located in 3'UTR regions (3utrSNPs). We then conducted a genome-wide search for marginal miSNPs effects and pairwise miSNPs × 3utrSNPs interactions in a sample of 1,467 individuals for which genome-wide monocyte expression and genotype data were available. Statistical associations that survived multiple testing correction were tested for replication in an independent sample of 758 individuals with both monocyte gene expression and genotype data. In both studies, the hsa-mir-1279 rs1463335 was found to modulate in cis the expression of LYZ and in trans the expression of CNTN6, CTRC, COPZ2, KRT9, LRRFIP1, NOD1, PCDHA6, ST5 and TRAF3IP2 genes, supporting the role of hsa-mir-1279 as a regulator of several genes in monocytes. In addition, we identified two robust miSNPs × 3utrSNPs interactions, one involving HLA-DPB1 rs1042448 and hsa-mir-219-1 rs107822, the second the H1F0 rs1894644 and hsa-mir-659 rs5750504, modulating the expression of the associated genes. As some of the aforementioned genes have previously been reported to reside at disease-associated loci, our findings provide novel arguments supporting the hypothesis that the genetic variability of miRNAs could also contribute to the susceptibility to human diseases
Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts
Background: Obesity, defined as pathologically increased body mass index (BMI),is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Joint analysis of multiple phenotypes: summary of results and discussions from the Genetic Analysis Workshop 19
For Genetic Analysis Workshop 19, 2 extensive data sets were provided, including whole genome and whole exome sequence data, gene expression data, and longitudinal blood pressure outcomes, together with nongenetic covariates. These data sets gave researchers the chance to investigate different aspects of more complex relationships within the data, and the contributions in our working group focused on statistical methods for the joint analysis of multiple phenotypes, which is part of the research field of data integration. The analysis of data from different sources poses challenges to researchers but provides the opportunity to model the real-life situation more realistically. Our 4 contributions all used the provided real data to identify genetic predictors for blood pressure. In the contributions, novel multivariate rare variant tests, copula models, structural equation models and a sparse matrix representation variable selection approach were applied. Each of these statistical models can be used to investigate specific hypothesized relationships, which are described together with their biological assumptions. The results showed that all methods are ready for application on a genome-wide scale and can be used or extended to include multiple omics data sets. The results provide potentially interesting genetic targets for future investigation and replication. Furthermore, all contributions demonstrated that the analysis of complex data sets could benefit from modeling correlated phenotypes jointly as well as by adding further bioinformatics information
RANTES/CCL5 and risk for coronary events:Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±4.8 years). Cox proportional hazard models adjusting for age, sex, body mass index, metabolic factors and lifestyle factors revealed no significant association between RANTES and incident coronary events (HR [95% CI] for increasing RANTES tertiles 1.0, 1.03 [0.75-1.42] and 1.11 [0.81-1.54]). None of six CCL5 single nucleotide polymorphisms and no common haplotype showed significant associations with coronary events. Also in the CARDIoGRAM study (>22,000 cases, >60,000 controls), none of these CCL5 SNPs was significantly associated with coronary artery disease. In the prospective Athero-Express biobank study, RANTES plaque levels were measured in 606 atherosclerotic lesions from patients who underwent carotid endarterectomy. RANTES content in atherosclerotic plaques was positively associated with macrophage infiltration and inversely associated with plaque calcification. However, there was no significant association between RANTES content in plaques and risk for coronary events (mean follow-up 2.8±0.8 years). Conclusions: High RANTES plaque levels were associated with an unstable plaque phenotype. However, the absence of associations between (i) RANTES serum levels, (ii) CCL5 genotypes and (iii) RANTES content in carotid plaques and either coronary artery disease or incident coronary events in our cohorts suggests that RANTES may not be a novel coronary risk biomarker. However, the potential relevance of RANTES levels in platelet-poor plasma needs to be investigated in further studies.</p
Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans
One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs) have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns—independent component analysis—to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739), previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1) is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178), which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644) was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the mechanisms linking genome-wide association loci to disease
The Tumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal Cells Is Controlled by the Recipients' Immune Response
Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1×106 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing
- …