106 research outputs found

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×10−7\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 10−2^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i∌0.01∘i\sim 0.01^\circ, should be less than 0.006∘0.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 10−9^{-9} cm s−2^{-2} Hz−1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit

    The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease.

    Get PDF
    Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.Supported by the Helmholtz Association and the German Center for Lung Research (DZL) (H.B.S.); the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 753039 (L.M.S.); U.K. Medical Research Council grant G0900424 (E.L.R.); National Institutes of Health (NIH) grants ES013995, HL071643, and AG049665, and Veterans Administration grant BX000201 and Department of Defense grant PR141319 (G.R.S.B.); NIH grants HL135124 and AI135964 and Department of Defense grant PR141319 (A.V.M.); NIH grants R01HL141852, R01HL127349, UHHL3123886, U01HL122626, and UG3TR002445, and Department of Defence grant PR151124 (N.K.); and the Netherlands Lung Foundation grants 5.1.14.020 and 4.1.18.226 (M.C.N.)

    Mediating Solidarity

    Get PDF
    With the apparent increase in the number of alternative political media, political pluralists are again faced with the question: does the proliferation of subaltern counter-publics lead to a multiplication of forces? Fragmentation in political culture is fuelled by the rise of identity politics that focuses on consumption not production. Party allegiances and class alliances give way to more fluid and informal networks of action. Postmodern theorists celebrate fragmentation because it allows the recognition of diversity in political desires, acknowledges difference between individuals and debunks the myth of homogenous political units leading ultimately to liberation. But for political efficacy there must be more than the apparent freedom that comes with embracing difference and diversity. This article argues that if we accept the description of society as fragmented, in order to create a viable political community then solidarity is crucial. In a global economy, solidarity can be mediated through new communication technologies but the challenge is to articulate the politics online with actual movements and struggles on the ground

    The Human Affectome

    Get PDF
    Over the last decades, the interdisciplinary field of the affective sciences has seen proliferation rather than integration of theoretical perspectives. This is due to differences in metaphysical and mechanistic assumptions about human affective phenomena (what they are and how they work) which, shaped by academic motivations and values, have determined the affective constructs and operationalizations. An assumption on the purpose of affective phenomena can be used as a teleological principle to guide the construction of a common set of metaphysical and mechanistic assumptions—a framework for human affective research. In this capstone paper for the special issue “Towards an Integrated Understanding of the Human Affectome”, we gather the tiered purpose of human affective phenomena to synthesize assumptions that account for human affective phenomena collectively. This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days
    • 

    corecore