125 research outputs found
Recommended from our members
Kinetic and Prediction of Hydrogen Outgassing from Lithium Hydride
In most industrial or device applications, LiH is placed in either an initially dry or a vacuum environment with other materials that may release moisture slowly over many months, years, or even decades. In such instances, the rate of hydrogen outgassing from the reaction of LiH with H{sub 2}O can be reasonably approximated by the rate at which H{sub 2}O is released from the moisture containing materials. In a vacuum or dry environment, LiOH decomposes slowly with time into Li{sub 2}O even at room temperature according to: 2LiOH(s) {yields} Li{sub 2}O(s) + H{sub 2}O(g) (1). The kinetics of the decomposition of LiOH depends on the dryness/vacuum level and temperature. It was discovered by different workers that vacuum thermal decomposition of bulk LiOH powder (grain sizes on the order of tens to hundreds of micrometers) into Li{sub 2}O follows a reaction front moving from the surface inward. Due to stress at the LiOH/vacuum interface and defective and missing crystalline bonding at surface sites, lattice vibrations at the surfaces/interfaces of most materials are at frequencies different than those in the bulk, a phenomenon observed in most solids. The chemical reactivity and electronic properties at surfaces and interfaces of materials are also different than those in the bulk. It is, therefore, expected that the amount of energy required to break bonds at the LiOH/vacuum interface is not as large as in the bulk. In addition, in an environment where there is a moisture sink or in the case of a continuously pumped vacuum chamber, H{sub 2}O vapor is continuously removed and LiOH decomposes into Li{sub 2}O from the LiOH/vacuum interface (where it is thermally less stable) inward according to reaction (1) in an effort to maintain the equilibrium H{sub 2}O vapor pressure at the sample/vacuum interface. In a closed system containing both LiH and LiOH, the H{sub 2}O released from the decomposition of LiOH reacts with LiH to form hydrogen gas according to the following reaction: 2LiH(s) + H{sub 2}O(g) {yields} Li{sub 2}O(s) +2H{sub 2}(g) + heat (2). Such is the case of vacuum thermal decomposition of a corrosion layer previously grown on top of a LiH substrate. Here, the huge H{sub 2}O concentration gradient across the Li{sub 2}O buffer layer in between the hydrophilic LiH substrate and LiOH, coupled with the defective nature of LiOH at surfaces/interfaces as discussed above, effectively lowers the energy barrier for LiOH decomposition here in comparison with bulk LiOH and turns the LiH substrate into an effective moisture pump. As a result, in the case of vacuum thermal decomposition of LiOH on top of a LiH substrate, the LiOH decomposition front starts at the LiH/Li{sub 2}O/LiOH interface. As a function of increasing time and temperature, the Li{sub 2}O layer in between LiH and LiOH gets thicker, causing the energy barrier for the LiOH decomposition at the LiOH/Li{sub 2}O/LiH interface to increase, and eventually LiOH at the LiOH/vacuum interface also starts to decompose into Li{sub 2}O for reasons described in the previous paragraph. Thereafter, the Li{sub 2}O fronts keep moving inward from all directions until all the LiOH is gone. This vacuum thermal decomposition process of LiOH previously grown on top of a LiH substrate is illustrated in the cartoon of figure 1
Recommended from our members
Hydrogen Outgassing from Lithium Hydride
Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed
Recommended from our members
Measurement and Prediction of Water Outgassing from TR55 Silicone by the Isoconversional Technique
The objectives of this report are to measure the H{sub 2}O outgassing kinetics of TR55 silicon after a few hours of vacuum pumping; and to make H{sub 2}O outgassing kinetic predictions for TR55 at low temperatures in a vacuum/dry environment
Recommended from our members
Moisture Outgassing from Silica-Filled Polydimethylsiloxane TR55 and S5370
Recommended from our members
Measurement and Prediction of H2O Outgassing Kinetics from Silica-Filled Polydimethylsiloxane TR55 and S5370
The isoconversional technique was employed for the measurement and prediction of H2O outgassing kinetics from silica-filled polydimethylsiloxane TR55 and S5370 in a vacuum or dry environment. Isoconversional analysis indicates that the energy barrier for H2O release from TR55 and S5370 is an increasing function of the fractional H2O release. This can be interpreted as the release of H2O from physisorbed water and then chemisorbed water with decreasing OH density from the surfaces of the embedded silica particles. Model independent predictions of H2O outgassing based on the measured kinetics follow the trend of actual isothermal outgassing at elevated temperatures, and suggest gradual outgassing in dry storage over many decades at low temperatures for both TR55 and S5370
Separation – integration – and now …? - An historical perspective on the relationship between German management accounting and financial accounting
German accounting has traditionally followed a dual ledger approach with strictly separated internal cost accounting, as the basis for management information, and external financial accounting focusing on creditor protection and based on the commercial law. However, the increased adoption of integrated accounting system implies a significant change in the relationship between financial and management accounting systems. We use Hegelian dialectic to trace the historical development of German accounting from separated systems towards antithetical propositions of full integration, and the emergence of partial integration as the synthesis of this transformation process. For this reason, our paper provides a comprehensive analysis of the literature on the relationship between financial and management accounting in Germany. On this basis, we elaborate how financial accounting in Germany has been shaped by its economic context and legislation, and how financial accounting – accompanied by institutional pressures – in turn influenced management accounting. We argue that the changing relationship between management and financial accounting in the German context illustrates how current accounting practice is shaped not only by its environment, but also by its historical path. Based on this reasoning, we discuss several avenues for future research
Structural studies of T4S systems by electron microscopy
Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies
The German Banking System and the Global Financial Crisis: Causes, Developments and Policy Responses
Germany's banking sector has been severely hit by the global financial crisis. In a German context as of February, 2009, this paper reviews briefly the structure of the banking industry, quantifies effects of the crisis on banks and surveys responses of economic policy. It is argued that policy design needs to enhance transparency and enforce the liability principle. In addition, economic policy should not eclipse principles of competition policy.Der deutsche Bankensektor ist durch die internationale Finanzkrise schwer getroffen. Auf Deutschland und die im Februar 2009 verfügbaren Informationen bezogen, werden die Struktur des Bankensektors kurz umrissen, die Effekte auf die Banken quantifiziert und wirtschaftspolitische Reaktionen aufgezeigt. Ziel der Wirtschaftspolitik ist es, die Transparenz zu erhöhen und das Haftungsprinzip durchzusetzen. Darüber hinaus sollten Grundsätze der Wettbewerbspolitik nicht in den Hintergrund geraten
Competition and Stability in Banking
I review the state of the art of the academic theoretical and empirical literature on the potential trade-off between competition and stability in banking. There are two basic channels through which competition may increase instability: by exacerbating the coordination problem of depositors/investors on the liability side and fostering runs/panics, and by increasing incentives to take risk and raise failure probabilities. The competition-stability trade-off is characterized and the implications of the analysis for regulation and competition policy are derived. It is found that optimal regulation may depend on the intensity of competition
- …