1,984 research outputs found

    On the Reduced SU(N) Gauge Theory in the Weyl-Wigner-Moyal Formalism

    Full text link
    Weyl-Wigner-Moyal formalism is used to describe the large-NN limit of reduced SU(N)(N) quenching gauge theory. Moyal deformation of Schild-Eguchi action is obtained.Comment: 24 pages, phyzzx file, no figures, version to appear in Int. J. Mod. Phys.

    Magnesium Coprecipitation with Calcite at Low Supersaturation: Implications for Mg-Enriched Water in Calcareous Soils

    Get PDF
    The concentrations of magnesium (Mg) and calcium (Ca) in natural aqueous environments are controlled by sorption and dissolution–precipitation reactions. Ca binding in calcareous soils depends on the degree of solution saturation with respect to CaCO3_{3}. Mg may be bound in precipitating calcite. Here, we investigated Mg incorporation into calcite via the recrystallization of vaterite, which simulates a very low supersaturation in a wide range of Mg to Ca ratios and pH conditions. Increasing the Mg to Ca ratios (0.2 to 10) decreased the partition coefficient of Mg in calcite from 0.03 to 0.005. An approximate thermodynamic mixing parameter (Guggenheim a0 = 3.3 ± 0.2), that is valid for dilute systems was derived from the experiments at the lowest initial Mg to Ca ratio (i.e., 0.2). At elevated Mg to Ca ratios, aragonite was preferentially formed, indicating kinetic controls on Mg partitioning into Mg-calcite. Scanning electron microscopy (SEM-EDX) analyses indicated that Mg is not incorporated into aragonite. The thermodynamic mixing model suggests that at elevated Mg to Ca ratio (i.e., ≄1) Mg-calcite becomes unstable relative to pure aragonite. Finally, our results suggest that the abiotic incorporation of Mg into calcite is only effective for the removal of Mg from aqueous environments like calcareous soil solution, if the initial Mg to Ca ratio is already low

    Anisotropic Null String Cosmologies

    Get PDF
    We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers of c^2, the world-sheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth and the first order solutions and we discuss some cosmological implications.Comment: 9 pages, plain Te

    Fluctuation theorem for constrained equilibrium systems

    Full text link
    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as iso-kinetic and Nos\'e-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless finite-time averages of the phase-space contraction rate have non-trivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for non-equilibrium stationary states, and appropriate to constrained equilibrium states. Moreover we show these fluctuations are distributed according to a Gaussian curve for long-enough times. Three different systems are considered here, namely (i) a fluid composed of particles interacting with Lennard-Jones potentials; (ii) a harmonic oscillator with Nos\'e-Hoover thermostatting; (iii) a simple hyperbolic two-dimensional map.Comment: To appear in Phys. Rev.

    Stiff Stability of the Hydrogen atom in dissipative Fokker electrodynamics

    Full text link
    We introduce an ad-hoc electrodynamics with advanced and retarded Lienard-Wiechert interactions plus the dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromagnetic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for oscillations perpendicular to the orbital plane. In particular we study the normal modes of the linearized dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that introduce a fast (stiff) timescale into the dynamics. As an application, we study the phenomenon of resonant dissipation, i.e., a motion where both particles recoil together in a drifting circular orbit (a bound state), while the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular orbit. The resonance condition quantizes the angular momenta in reasonable agreement with the Bohr atom. The principal result is that the emission lines of quantum electrodynamics (QED) agree with the prediction of our resonance condition within one percent average deviation.Comment: 1 figure, Notice that Eq. (34) of the Phys. Rev. E paper has a typo; it is missing the square Brackets of eq. (33), find here the correct e

    String Tension and the Generation of the Conformal Anomaly

    Get PDF
    The origin of the string conformal anomaly is studied in detail. We use a reformulated string Lagrangian which allows to consider the string tension T0T_{0} as a small perturbation. The expansion parameter is the worldsheet speed of light c, which is proportional to T0T_{0} . We examine carefully the interplay between a null (tensionless) string and a tensionful string which includes orders c2 c^{2} and higher. The conformal algebra generated by the constraints is considered. At the quantum level the normal ordering provides a central charge proportional to c2 c^{2} . Thus it is clear that quantum null strings respect conformal invariance and it is the string tension which generates the conformal anomaly.Comment: More references are included. Final version, to appear in Phys.Rev.D. 6 pages, LaTex, no figure

    Gravitational hydrodynamics of large scale structure formation

    Get PDF
    The gravitational hydrodynamics of the primordial plasma with neutrino hot dark matter is considered as a challenge to the bottom-up cold dark matter paradigm. Viscosity and turbulence induce a top-down fragmentation scenario before and at decoupling. The first step is the creation of voids in the plasma, which expand to 37 Mpc on the average now. The remaining matter clumps turn into galaxy clusters. Turbulence produced at expanding void boundaries causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex lines. At decoupling galaxies and proto-globular star clusters arise; the latter constitute the galactic dark matter halos and consist themselves of earth-mass H-He planets. Frozen planets are observed in microlensing and white-dwarf-heated ones in planetary nebulae. The approach also explains the Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature fluctuations of micro-Kelvins.Comment: 6 pages, no figure

    Bosonic Description of Spinning Strings in 2+12+1 Dimensions

    Get PDF
    We write down a general action principle for spinning strings in 2+1 dimensional space-time without introducing Grassmann variables. The action is written solely in terms of coordinates taking values in the 2+1 Poincare group, and it has the usual string symmetries, i.e. it is invariant under a) diffeomorphisms of the world sheet and b) Poincare transformations. The system can be generalized to an arbitrary number of space-time dimensions, and also to spinning membranes and p-branes.Comment: Latex, 12 page

    Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27

    Get PDF
    The immune response to bacterial infections must be tightly controlled to guarantee pathogen elimination while preventing tissue damage by uncontrolled inflammation. Here, we demonstrate a key role of interleukin (IL)-27 in regulating this critical balance. IL-27 was rapidly induced during murine experimental peritonitis induced by cecal ligation and puncture (CLP). Furthermore, mice deficient for the EBI3 subunit of IL-27 were resistant to CLP-induced septic peritonitis as compared with wild-type controls, and this effect could be suppressed by injection of recombinant single-chain IL-27. EBI3−/− mice displayed significantly enhanced neutrophil migration and oxidative burst capacity during CLP, resulting in enhanced bacterial clearance and local control of infection. Subsequent studies demonstrated that IL-27 directly suppresses endotoxin-induced production of reactive oxygen intermediates by isolated primary granulocytes and macrophages. Finally, in vivo blockade of IL-27 function using a newly designed soluble IL-27 receptor fusion protein led to significantly increased survival after CLP as compared with control-treated mice. Collectively, these data identify IL-27 as a key negative regulator of innate immune cell function in septic peritonitis. Furthermore, in vivo blockade of IL-27 is a novel potential therapeutic target for treatment of sepsis

    XMM-Newton observations of a superbubble in N 158 in the LMC

    Full text link
    Aims: We study the diffuse X-ray emission observed in the field of view of the pulsar B 0540-69 in the Large Magellanic Cloud (LMC) by XMM-Newton. We want to understand the nature of this soft diffuse emission, which coincides with the superbubble in the HII region N 158, and improve our understanding of the evolution of superbubbles. Methods: We analyse the XMM-Newton spectra of the diffuse emission. Using the parameters obtained from the spectral fit, we perform calculations of the evolution of the superbubble. The mass loss and energy input rates are based on the initial mass function (IMF) of the observed OB association inside the superbubble. Results: The analysis of the spectra shows that the soft X-ray emission arises from hot shocked gas surrounded by a thin shell of cooler, ionised gas. We show that the stellar winds alone cannot account for the energy inside the superbubble, but the energy release of 2 - 3 supernova explosions in the past ~1 Myr provides a possible explanation. Conclusions: The combination of high sensitivity X-ray data, allowing spectral analysis, and analytical models for superbubbles bears the potential to reveal the evolutionary state of interstellar bubbles, if the stellar content is known.Comment: 7 pages. Accepted for publication in A&
    • 

    corecore