We write down a general action principle for spinning strings in 2+1
dimensional space-time without introducing Grassmann variables. The action is
written solely in terms of coordinates taking values in the 2+1 Poincare group,
and it has the usual string symmetries, i.e. it is invariant under a)
diffeomorphisms of the world sheet and b) Poincare transformations. The system
can be generalized to an arbitrary number of space-time dimensions, and also to
spinning membranes and p-branes.Comment: Latex, 12 page