50 research outputs found

    Г.М.Добров и международное научно-технической сотрудничество

    Get PDF
    На основании анализа документов, архивных материалов, публикаций освещается деятельность Г.М.Доброва в международных научных организациях, его участие в выполнении международных научных программ и проектов. Приведены сведения об участии Г.М.Доброва в международных научных симпозиумах, организованных Комиссией по научно-техническому сотрудничеству СЭВ (1968—1987), а также в международных конгрессах историков естествознания и техники (1962—1988) и всемирных социологических конгрессах (1970—1982).На основі аналізу документів, архівних матеріалів, публікацій висвітлено діяльність Г.М. Доброва у міжнародних наукових організаціях, його участь у виконанні міжнародних наукових програм і проектів. Наведено відомості щодо участі Г.М. Доброва у міжнародних наукових симпозіумах, організованих Комісією з науково-технічного співробітництва СЕВ (1968—1987), а також у міжнародних конгресах істориків природознавства і техніки (1962—1988) і всесвітніх соціологічних конгресах (1970—1982).Work of G.M. Dobrov in international scientific organizations and his contributions in international research programs and projects are highlighted through analysis of documents, materials from archives and publications. Information is given about his participation in international scientific symposia organized by the Commission on S&T Cooperation at the Council for Mutual Economic Assistance (CMEA) (1968—1987), in international congresses of historians on natural science and technology (1962—1988) and in world congresses on sociology (1970—1982)

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15 cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7 ×102 - 6.6 ×108 particles ml−1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15 cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7 ×102 - 6.6 ×108 particles ml−1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15 cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7 ×102 - 6.6 ×108 particles ml−1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15 cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7 ×102 - 6.6 ×108 particles ml−1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15 cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7 ×102 - 6.6 ×108 particles ml−1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization

    Removal of bacterial plant pathogens in columns filled with quartz and natural sediments under anoxic and oxygenated conditions

    Get PDF
    Irrigation with surface water carrying plant pathogens poses a risk for agriculture. Managed aquifer recharge enhances fresh water availability while simultaneously it may reduce the risk of plant diseases by removal of pathogens during aquifer passage. We compared the transport of three plant pathogenic bacteria with Escherichia coli WR1 as reference strain in saturated laboratory column experiments filled with quartz sand, or sandy aquifer sediments. E. coli showed the highest removal, followed by Pectobacterium carotovorum, Dickeya solani and Ralstonia solanacearum. Bacterial and non-reactive tracer breakthrough curves were fitted with Hydrus-1D and compared with colloid filtration theory (CFT). Bacterial attachment to fine and medium aquifer sand under anoxic conditions was highest with attachment rates of max. katt1 = 765 day-1 and 355 day-1, respectively. Attachment was the least to quartz sand under oxic conditions (katt1 = 61 day-1). In CFT, sticking efficiencies were higher in aquifer than in quartz sand but there was no differentiation between fine and medium aquifer sand. Overall removal ranged between < 6.8 log10 m−1 in quartz and up to 40 log10 m−1 in fine aquifer sand. Oxygenation of the anoxic aquifer sediments for two weeks with oxic influent water decreased the removal. The results highlight the potential of natural sand filtration to sufficiently remove plant pathogenic bacteria during aquifer storage

    Asymmetric aerosol volume transmission: A computational approach toward infection prevention efficiency of face masks

    Get PDF
    Wearing face masks is considered as one of the infection prevention and control options for respiratory viruses (e.g., SARS-CoV-2) that acts by blocking virus-laden aerosols. It is generally thought that aerosol blockage occurs when air passes through the face mask fabric. We calculated air flows through face masks and through peripheral leakages, based on reported breathing resistance values of face masks (FFP/N95, surgical masks, and cloth masks) and found that most of the inhaled and exhaled air passes through these peripheral leakages. Nevertheless, face masks remain effective as an infection prevention option, because additional calculations showed that the majority of aerosol volume cannot follow the tortuous path of air around the face mask. The filtering efficiency through the peripheral leakages can be described as a function of breathing conditions, vocal activities, the leakage geometry and tortuous pathway, aerosol properties (diameter, composition) and ambient conditions (e.g., evaporation, ventilation). Inclusion of these parameters explains the asymmetric filtering behavior of face masks, i.e., the risk of infection from person A to person B does not necessarily equal the risk of infection from person B to person A. Our findings explain thus why masking an infectious person is more effective than masking an exposed person. Establishing that the tortuous pathway of air around the face mask is the sole contributor to face mask efficiency opens new opportunities for designing safer face masks

    Do absorption and realistic distraction influence performance of component task surgical procedure?

    Get PDF
    Background. Surgeons perform complex tasks while exposed to multiple distracting sources that may increase stress in the operating room (e.g., music, conversation, and unadapted use of sophisticated technologies). This study aimed to examine whether such realistic social and technological distracting conditions may influence surgical performance. Methods. Twelve medical interns performed a laparoscopic cholecystectomy task with the Xitact LC 3.0 virtual reality simulator under distracting conditions (exposure to music, conversation, and nonoptimal handling of the laparoscope) versus nondistracting conditions (control condition) as part of a 2 x 2 within-subject experimental design. Results. Under distracting conditions, the medical interns showed a significant decline in task performance (overall task score, task errors, and operating time) and significantly increased levels of irritation toward both the assistant handling the laparoscope in a nonoptimal way and the sources of social distraction. Furthermore, individual differences in cognitive style (i.e., cognitive absorption and need for cognition) significantly influenced the levels of irritation experienced by the medical interns. Conclusion. The results suggest careful evaluation of the social and technological sources of distraction in the operation room to reduce irritation for the surgeon and provision of proper preclinical laparoscope navigation training to increase security for the patient.Industrial DesignIndustrial Design Engineerin
    corecore