146 research outputs found

    Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    Get PDF
    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes

    Технологические решения для строительства разведочной вертикальной скважины глубиной 2620 метров на нефтяном месторождении (Красноярский край)

    Get PDF
    Технологический проект на сооружение разведочной вертикальной скважины глубиной 2620 метров на нефтяном месторождении (Красноярский край). В проекте закладываются меры по предотвращению осложнений, а также мероприятия по отбору керна для подсчета запасов, оценки пригодности месторождения к освоению, а также определения геологического строения и составления проектов разработки в целях определения технологии бурения эксплуатационных скважин.Technological project for the construction of an exploratory vertical well with a depth of 2620 meters at an oil field (Krasnoyarsk Territory). The project includes measures to prevent complications, as well as measures to select the core for calculating reserves, assessing the suitability of the field for development, as well as determining the geological structure and drawing up development projects in order to determine the technology for drilling production wells

    Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010

    Get PDF
    This article is based upon work from COST Action ES1101 "Harmonising Global Biodiversity Modelling" (Harmbio), supported by COST (European Cooperation in Science and Technology).Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on five year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species sub-groups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multi-faceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.Publisher PDFPeer reviewe

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Nasopharyngeal Myoepithelial Carcinoma Mimicking Nasopharyngeal Carcinoma

    Get PDF
    AbstractMyoepithelial carcinoma (malignant myoepithelioma) (MC) is a rare tumor, defined as a malignant salivary neoplasm composed almost exclusively of tumor cells with myoepithelial differentiation. It can arise in unusual location sites, such as the nasopharynx, and may be difficult to approach. Nasopharyngeal MC can sometimes present as a nasopharyngeal mass which may be mistaken for primary nasopharyngeal carcinoma (NPC). The treatment strategy for nasopharyngeal MC is different from NPC, and maximal surgical resection of the main lesion is still considered as the mainstay of therapy. Herein we present a 32-year-old man with a nasopharyngeal mass which was initially mistaken as NPC, and which was later confirmed as MC after a comprehensive review of the pathology

    Solid-state interconversions: Unique 100% reversible transformations between the ground and metastable states in single-crystals of a series of nickel( II) nitro complexes

    Get PDF
    The solid-state, low-temperature linkage isomerism in a series of five square planar group 10 phosphino nitro complexes have been investigated by a combination of photocrystallographic experiments, Raman spectroscopy and computer modelling. The factors influencing the reversible solid-state interconversion between the nitro and nitrito structural isomers have also been investigated, providing insight into the dynamics of this process. The cis-[Ni(dcpe)(NO2)2] (1) and cis-[Ni(dppe)(NO2)2] (2) complexes show reversible 100 % interconversion between the η1-NO2 nitro isomer and the η1-ONO nitrito form when single-crystals are irradiated with 400 nm light at 100 K. Variable temperature photocrystallographic studies for these complexes established that the metastable nitrito isomer reverted to the ground-state nitro isomer at temperatures above 180 K. By comparison, the related trans complex [Ni(PCy3)2(NO2)2] (3) showed 82 % conversion under the same experimental conditions at 100 K. The level of conversion to the metastable nitrito isomers is further reduced when the nickel centre is replaced by palladium or platinum. Prolonged irradiation of the trans-[Pd(PCy3)2(NO2)2] (4) and trans-[Pt(PCy3)2(NO2)2] (5) with 400 nm light gives reversible conversions of 44 and 27 %, respectively, consistent with the slower kinetics associated with the heavier members of group 10. The mechanism of the interconversion has been investigated by theoretical calculations based on the model complex [Ni(dmpe)Cl(NO2)]
    corecore