486 research outputs found

    Massively parallel lattice–Boltzmann codes on large GPU clusters

    Get PDF
    This paper describes a massively parallel code for a state-of-the art thermal lattice–Boltzmann method. Our code has been carefully optimized for performance on one GPU and to have a good scaling behavior extending to a large number of GPUs. Versions of this code have been already used for large-scale studies of convective turbulence. GPUs are becoming increasingly popular in HPC applications, as they are able to deliver higher performance than traditional processors. Writing efficient programs for large clusters is not an easy task as codes must adapt to increasingly parallel architectures, and the overheads of node-to-node communications must be properly handled. We describe the structure of our code, discussing several key design choices that were guided by theoretical models of performance and experimental benchmarks. We present an extensive set of performance measurements and identify the corresponding main bottlenecks; finally we compare the results of our GPU code with those measured on other currently available high performance processors. Our results are a production-grade code able to deliver a sustained performance of several tens of Tflops as well as a design and optimization methodology that can be used for the development of other high performance applications for computational physics

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature

    Full text link
    Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    The Spin Glass Phase in the Four-State, Three-Dimensional Potts Model

    Get PDF
    We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the "random permutation" Potts glass.Comment: 7 pages and 3 figures. Corrected minor typo

    The Mpemba effect in spin glasses is a persistent memory effect

    Get PDF
    The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a non-equilibrium process, governed by the coherence length \xi of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and \xi that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing new avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.Comment: Version accepted for publication in PNAS. 6 pages, 7 figure

    New/emerging psychoactive substances and associated psychopathological consequences

    Get PDF
    Submitted 24 November 2018, Revised 18 June 2019, Accepted 26 June 2019, Published online 22 July 2019BackgroundThe present paper provides an updated review of both the large number of new/novel/emerging psychoactive substances (NPS) and their associated psychopathological consequences. Focus was here given on identification of those NPS being commented in specialised online sources and the related short-/long-term psychopathological and medical ill-health effects.MethodsNPS have been identified through an innovative crawling/navigating software, called the 'NPS.Finder®', created in order to facilitate the process of early recognition of NPS online. A range of information regarding NPS, including chemical and street names; chemical formula; three-dimensional image and anecdotally reported clinical/psychoactive effects, were here made available.ResultsUsing the 'NPS.Finder®' approach, a few thousand NPS were here preliminarily identified, a number which is about 4-fold higher than those figures suggested by European and international drug agencies. NPS most commonly associated with the onset of psychopathological consequences included here synthetic cannabinoids/cannabimimetics; new synthetic opioids; ketamine-like dissociatives; novel stimulants; novel psychedelics and several prescription and over-the-counter medicines.ConclusionsThe ever-increasing changes in terms of recreational psychotropics' availability represent a relatively new challenge for psychiatry, as the pharmacodynamics and pharmacokinetics of many NPS have not been thoroughly understood. Health/mental health professionals should be informed about the range of NPS; their intake modalities; their psychoactive sought-after effects; the idiosyncratic psychotropics' combinations and finally, their medical and psychopathological risks.Peer reviewe

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    JANUS: an FPGA-based System for High Performance Scientific Computing

    Get PDF
    This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ~ 1000. We also discuss the role of JANUS on other classes of scientific applications.Comment: 11 pages, 6 figures. Improved version, largely rewritten, submitted to Computing in Science & Engineerin
    • …
    corecore