7 research outputs found

    Ultra-Low Background Germanium Spectroscopy : Commissioning an experimental shielding for a future neutrino experiment

    No full text
    This work was carried out during the assembly phase of the COherent elastic Neutrino nUcleus Scattering (CONUS) experiment which is trying to detect the coherent elastic neutrino nucleus scattering process with a nuclear power plant as neutrino source. The experimental set-up has been initially tested in an underground laboratory at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg. The goal for this thesis was the assembly and tuning of its muonveto system as well as a general test of its shielding as a whole. Therefore the data acquisition unit has been set-up and measurements were carried out with a germanium detector to quantify the obtained energy spectra and veto efficiencies. With the testing phase almost completed, the CONUS experiment will start its detection process within 2017

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    Continuum sources from the THOR survey between 1 and 2 GHz

    Get PDF
    We carried out a large program with the Karl G. Jansky Very Large Array (VLA): "THOR: The HI, OH, Recombination line survey of the Milky Way". We observed a significant portion of the Galactic plane in the first quadrant of the Milky Way in the 21cm HI line, 4 OH transitions, 19 radio recombination lines, and continuum from 1 to 2 GHz. In this paper we present a catalog of the continuum sources in the first half of the survey (l=14.0-37.9deg and l=47.1-51.2deg, |b|<1.1deg) at a spatial resolution of 10-25", with a spatially varying noise level of ~0.3-1 mJy/beam. The catalog contains ~4400 sources. Around 1200 of these are spatially resolved, and ~1000 are possible artifacts, given their low signal-to-noise ratios. Since the spatial distribution of the unresolved objects is evenly distributed and not confined to the Galactic plane, most of them are extragalactic. Thanks to the broad bandwidth of the observations from 1 to 2 GHz, we are able to determine a reliable spectral index for ~1800 sources. The spectral index distribution reveals a double-peaked profile with maxima at spectral indices of alpha = -1 and alpha = 0 , corresponding to steep declining and flat spectra, respectively. This allows us to distinguish between thermal and non-thermal emission, which can be used to determine the nature of each source. We examine the spectral index of ~300 known HII regions, for which we find thermal emission with spectral indices around alpha = 0. In contrast, supernova remnants (SNR) show non-thermal emission with alpha = -0.5 and extragalactic objects generally have a steeper spectral index of alpha = -1. Using the spectral index information of the THOR survey, we investigate potential SNR candidates. We classify the radiation of four SNR candidates as non-thermal, and for the first time, we provide strong evidence for the SNR origin of these candidates

    The HI/OH/Recombination line survey of the inner Milky Way (THOR)

    Get PDF
    Context: The past decade has witnessed a large number of Galactic plane surveys at angular resolutions below 20". However, no comparable high-resolution survey exists at long radio wavelengths around 21cm in line and continuum emission. Methods: Employing the Very Large Array (VLA) in the C-array configuration and a large program, we observe the HI 21cm line, four OH lines, nineteen Halpha radio recombination lines as well as the continuum emission from 1 to 2GHz in full polarization over a large part of the first Galactic quadrant. Results: Covering Galactic longitudes from 14.5 to 67.4deg and latitudes between +-1.25deg, we image all of these lines and the continuum at ~20" resolution. These data allow us to study the various components of the interstellar medium (ISM): from the atomic phase, traced by the HI line, to the molecular phase, observed by the OH transitions, to the ionized medium, revealed by the cm continuum and the Halpha radio recombination lines. Furthermore, the polarized continuum emission enables magnetic field studies. In this overview paper, we discuss the survey outline and present the first data release as well as early results from the different datasets. We now release the first half of the survey; the second half will follow later after the ongoing data processing has been completed. The data in fits format (continuum images and line data cubes) can be accessed through the project web-page http://www.mpia.de/thor. Conclusions: The HI/OH/Recombination line survey of the Milky Way (THOR) opens a new window to the different parts of the ISM. It enables detailed studies of molecular cloud formation, conversion of atomic to molecular gas, and feedback from HII regions as well as the magnetic field in the Milky Way. It is highly complementary to other surveys of our Galaxy, and comparing different datasets allows us to address many open questions

    A novel experiment for coherent elastic neutrino nucleus scattering:CONUS

    No full text
    The CONUS experiment (COherent elastic NeUtrino nucleus Scattering) aims at detecting coherent elastic neutrino nucleus scattering of reactor antineutrinos on Germanium. The experiment will be set up at the commercial nuclear power plant of Brokdorf, Germany, at a distance of ∼17 m to the reactor core. The recoil of the nuclei hit by the antineutrinos is detected with four high-purity point contact Germanium detectors with a very low threshold and an overall mass of about 4 kg. To suppress the background, the setup is equipped with a shell-like passive shield and an active muon veto system. The shield and the muon veto have successfully been tested at the shallow depth laboratory at Max-Planck-Institut für Kernphysik. Monte Carlo simulations have been performed to reproduce the prompt muon-induced background and to examine the induced neutron spectrum. Currently, the low threshold Germanium detectors are characterized and the experiment is prepared for commissioning.The CONUS experiment (COherent elastic NeUtrino nucleus Scattering) aims at detecting coherent elastic neutrino nucleus scattering of reactor antineutrinos on Germanium. The experiment will be set up at the commercial nuclear power plant of Brokdorf, Germany, at a distance of ∼17 m to the reactor core. The recoil of the nuclei hit by the antineutrinos is detected with four high-purity point contact Germanium detectors with a very low threshold and an overall mass of about 4 kg. To suppress the background, the setup is equipped with a shell-like passive shield and an active muon veto system. The shield and the muon veto have successfully been tested at the shallow depth laboratory at Max-Planck-Institut für Kernphysik. Monte Carlo simulations have been performed to reproduce the prompt muon-induced background and to examine the induced neutron spectrum. Currently, the low threshold Germanium detectors are characterized and the experiment is prepared for commissioning

    Continuum sources from the THOR survey between 1 and 2 GHz

    Get PDF
    We carried out a large program with the Karl G. Jansky Very Large Array (VLA): “THOR: The H?I, OH, Recombination line survey of the Milky Way”. We observed a significant portion (~100?deg2) of the Galactic plane in the first quadrant of the Milky Way in the 21?cm H?I line, 4 OH transitions, 19 radio recombination lines, and continuum from 1 to 2?GHz. In this paper we present a catalog of the continuum sources in the first half of the survey (l = 14.0?37.9° and l = 47.1?51.2°, | b | ? 1.1°) at a spatial resolution of 10?25?, depending on the frequency and sky position with a spatially varying noise level of ~0.3?1?mJy?beam-1. The catalog contains ~4400 sources. Around 1200 of these are spatially resolved, and ~1000 are possible artifacts, given their low signal-to-noise ratios. Since the spatial distribution of the unresolved objects is evenly distributed and not confined to the Galactic plane, most of them are extragalactic. Thanks to the broad bandwidth of the observations from 1 to 2?GHz, we are able to determine a reliable spectral index for ~1800 sources. The spectral index distribution reveals a double-peaked profile with maxima at spectral indices of ? ? ?1 and ? ? 0, corresponding to steep declining and flat spectra, respectively. This allows us to distinguish between thermal and non-thermal emission, which can be used to determine the nature of each source. We examine the spectral index of ~300 known H?II regions, for which we find thermal emission with spectral indices around ? ? 0. In contrast, supernova remnants (SNR) show non-thermal emission with ? ? ?0.5 and extragalactic objects generally have a steeper spectral index of ? ? ?1. Using the spectral index information of the THOR survey, we investigate potential SNR candidates. We classify the radiation of four SNR candidates as non-thermal, and for the first time, we provide strong evidence for the SNR origin of these candidates
    corecore