191 research outputs found

    Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Full text link
    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50+x_{50+x}Mn25x_{25-x}Ga25_{25} (x=0x=0, 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TMT_M and ferromagnetic ordering at temperature TCT_C, while the pure end member (x=0x=0) also has a premartensitic transition at TPMT_{PM}, giving four different scenarios: TC>TPM>TMT_C>T_{PM}>T_M, TC>TMT_C>T_M without premartensitic transition, TCTMT_C\approx T_M, and TC<TMT_C<T_M. Fundamental differences in elastic properties i.e., stiffening versus softening, are explained in terms of coupling of shear strains with three discrete order parameters relating to magnetic ordering, a soft mode and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.Comment: 9 pages, 5 figure

    Elastic and anelastic relaxations associated with phase transitions in EuTiO3

    Get PDF
    Elastic and anelastic properties of single crystal samples of EuTiO3 have been measured between 10 and 300 K by Resonant Ultrasound Spectroscopy at frequencies in the vicinity of 1 MHz. Softening of the shear elastic constants C44 and by ~20-30% occurs with falling temperature in a narrow interval through the transition point, Tc = 284 K, for the cubic - tetragonal transition. This is accounted for by classical coupling of macroscopic spontaneous strains with the tilt order parameter, in the same manner as occurs in SrTiO3. A peak in the acoustic loss occurs a few degrees below Tc and is interpreted in terms of initially mobile ferroelastic twin walls which rapidly become pinned with further lowering of temperature. This contrasts with the properties of twin walls in SrTiO3 which remain mobile down to at least 15 K. No further anomalies were observed that might be indicative of strain coupling to any additional phase transitions above 10 K. A slight anomaly in the shear elastic constants, independent of frequency and without any associated acoustic loss, was found at ~140 K. It marks a change from elastic stiffening to softening with falling temperature and perhaps provides evidence for coupling between strain and local fluctuations of dipoles related to the incipient ferroelectric transition. An increase in acoustic loss below ~80 K is attributed to the development of dynamical magnetic clustering ahead of the known antiferromagnetic ordering transition at ~5.5 K. Detection of these elastic anomalies serves to emphasise that coupling of strain with tilting, ferroelectric and magnetic order parameters is likely to be a permeating influence in determining the structure, stability, properties and behaviour of EuTiO3.RUS facilities were established in Cambridge through a grant from the Natural Environment Research Council of Great Britain to MAC, which is gratefully acknowledged (NE/B505738/1). LJS acknowledges the support of the National Science Centre (NCN) through Grant MAESTRO No. DEC-2012/04/A/ST3/00342. CP acknowledges Financial support in Greece through grants EURYI and MEXT-CT-2006-039047 grants, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme.This is the accepted version. The final version is published of the final version by APS here: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.054119

    Strain behavior and lattice dynamics in Ni50Mn35In15

    Get PDF
    The lattice dynamics in the polycrystalline shape-memory Heusler alloy Ni50Mn35In15 have been studied by means of resonant ultrasound spectroscopy (RUS). RUS spectra were collected in a frequency range 100–1200 kHz between 10 and 350 K. Ni50Mn35In15 exhibits a ferromagnetic transition at 313 K in the austenite phase and a martensitic transition at 248 K accompanied by a change of the magnetic state. Furthermore it displays a paramagnetic to ferrimagnetic transition within the martensitic phase. We determined the temperature dependence of the shear modulus and the acoustic attenuation of Ni50Mn35In15 and compared it with magnetization data. Following the structural softening, which accompanies the martensitic transition as a pretransitional phenomenon, a strong stiffening of the lattice is observed at the martensitic magneto-structural transition. Only a weak magnetoelastic coupling is evidenced at the Curie temperatures both in austenite and martensite phases. The large acoustic damping in the martensitic phase compared with the austenitic phase reflects the motion of the twin walls, which freezes out in the low temperature region

    Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy

    Get PDF
    Magneto-electric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here the magneto-elastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in-situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature, Ts, to below the antiferromagnetic ordering temperature Tn. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behaviour of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low temperature coupling.MAC acknowledges support from NERC and EPSRC (grants NE/B505738/1 and EP/I036079/1, respectively). CP acknowledges financial support in Greece through FP7-REGPOT-2012-2013-1, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme. LJS acknowledges the support of the National Science Centre (NCN) through grant MAESTRO no. DEC-2012/04/A/ST3/00342. Dr Albert Migliori (Los Alamos National Laboratory) is thanked for invaluable assistance in creating the RUS system with in-situ magnetic field. Prof Jim Scott (U. Cambridge) is thanked for his advice and assistance in interpreting the data and improving the manuscript. Tony Dennis (U. Cambridge) collected the SQUID data.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevB.93.05410

    Magnetoelastic relaxations in EuTiO3

    Get PDF
    The multiferroic properties of EuTiO3 are greatly enhanced when a sample is strained, signifying that coupling between strain and structural, magnetic or ferroelectric order parameters is extremely important. Here resonant ultrasound spectroscopy has been used to investigate strain coupling effects, as well as possible additional phase transitions, through their influence on elastic and anelastic relaxations that occur as a function of temperature between 2 and 300 K and with applied magnetic field up to 14 T. Antiferromagnetic ordering is accompanied by acoustic loss and softening, and a weak magnetoelastic effect is also associated with the change in magnetization direction below . Changes in loss due to the influence of magnetic field suggest the existence of magnetic defects which couple with strain and may play a role in pinning of ferroelastic twin walls

    Direct observation of polar tweed in LaAlO3

    Get PDF
    Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 μm) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and Resonant Piezoelectric Spectroscopy (RPS). PFM and RPS observations prove unequivocally that electrical polarity exists inside the tweed patterns of LaAlO3. The local piezoelectric effect varies greatly within the tweed patterns and reaches magnitudes similar to quartz. The patterns were mapped by the shift of the Eg soft-mode frequency by Raman spectroscopy

    Strain relaxation behaviour of vortices in a multiferroic superconductor.

    Get PDF
    The elastic and anelastic properties of a single crystal of Co-doped pnictide Ba(Fe0.957Co0.043)2As2 have been determined by resonant ultrasound spectroscopy in the frequency range 10-500 kHz, both as a function of temperature through the normal-superconducting transition (T c ≈ 12.5 K) and as a function of applied magnetic field up to 12.5 T. Correlation with thermal expansion, electrical resistivity, heat capacity, DC and AC magnetic data from crystals taken from the same synthetic batch has revealed the permeating influence of strain on coupling between order parameters for the ferroelastic (Q E) and superconducting (Q SC) transitions and on the freezing/relaxation behaviour of vortices. Elastic softening through T c in zero field can be understood in terms of classical coupling of the order parameter with the shear strain e 6, λe 6 Formula: see text, which means that there must be a common strain mechanism for coupling of the form λ Formula: see text Q E. At fields of ~5 T and above, this softening is masked by Debye-like stiffening and acoustic loss processes due to vortex freezing. The first loss peak may be associated with the establishment of superconductivity on ferroelastic twin walls ahead of the matrix and the second is due to the vortex liquid-vortex glass transition. Strain contrast between vortex cores and the superconducting matrix will contribute significantly to interactions of vortices both with each other and with the underlying crystal structure. These interactions imply that iron-pnictides represent a class of multiferroic superconductors in which strain-mediated coupling occurs between the multiferroic properties (ferroelasticity, antiferromagnetism) and superconductivity

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Do fish go with the flow? The effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river

    Get PDF
    The hydrological regime is a significant driver of fish population dynamics in rivers, but there is a dearth of information regarding the mechanisms behind its effects on temperate species, especially non-salmonids. This study investigated the effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river. De-seasonalized cross-correlation analysis was used to examine time-lagged correlations in episodic signals, in isolation of seasonal periodicity, to identify the responses and response timings of 0+ fish production to abiotic variables, and whether apparent “pulse-depletions” in biomass occur instantaneously (e.g., due to fish displacement during high pulses) or after a time lag. As anticipated, 0+ fish biomass was highest during periods of low discharge and high temperatures in summer, but cross-correlation analysis revealed a negative impact of high pulses on 0+ fish biomass with a lag of 7 months. There was no evidence for an instantaneous pulse-depletion effect of discharge on 0+ fish biomass, suggesting that the indirect effects of high pulses, such as habitat or food-web modifications, are more influential
    corecore