6,069 research outputs found

    Symbolic Activities in Virtual Spaces

    Get PDF
    This paper presents an approach to combine concepts ofsymbolic acting and virtual storytelling with the support ofcooperative processes. We will motivate why symboliclanguages are relevant in the social context of awarenessapplications. We will describe different symbolicpresentations and illustrate their application in three differentprototypes

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data

    Get PDF
    Event Shape Data from e+ee^+e^- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling αS\alpha_S. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is αS(MZ)\alpha_S(M_Z)= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is αS\alpha_S= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of αS\alpha_S agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version with JADE author lis

    Diagnostics to reduce antimicrobial (mis)use

    Get PDF

    24 segment high field permanent sextupole magnets

    Get PDF
    We report on the design, construction, and magnetic field measurements of a system of high field sextupole magnets made from NdFeB compounds. The magnets are utilized as a focusing system for neutral hydrogen (or deuterium) atoms in a polarized atomic beam source based on Stern-Gerlach spin separation. Each magnet consists of 24 segments of permanently magnetized material differing in remanence and coercivity to reduce demagnetization. According to quadratic extrapolation to the pole tip the magnetic flux density reaches values of up to B-0=1.69 T. Three-dimensional field calculations using the MAFIA code were carried out to optimize the magnet performance and to avoid demagnetization by selecting appropriate materials for the individual segments. Measurements of the radial, azimuthal, and longitudinal magnetic flux density distributions were carried out by means of a small Hall probe (100x200x15 mu m(3)). The measurements with the small probe permitted to extract experimentally higher order multipole components very close (similar to 100 mu m) to the inner surface. Experimental values obtained are compared to predictions based on MAFIA calculations and on the Halbach formalism. (C) 2000 American Institute of Physics. [S0034-6748(00)05309-0]

    Proton--induced deuteron breakup at GeV energies with forward emission of a fast proton pair

    Get PDF
    A study of the deuteron breakup reaction pd(pp)npd \to (pp)n with forward emission of a fast proton pair with small excitation energy Epp<E_{pp}< 3 MeV has been performed at the ANKE spectrometer at COSY--J\"ulich. An exclusive measurement was carried out at six proton--beam energies Tp=T_p=~0.6,~0.7,~0.8,~0.95,~1.35, and 1.9 GeV by reconstructing the momenta of the two protons. The differential cross section of the breakup reaction, averaged up to 88^{\circ} over the cm polar angle of the total momentum of the pppp pairs, has been obtained. Since the kinematics of this process is quite similar to that of backward elastic pddppd \to dp scattering, the results are compared to calculations based on a theoretical model previously applied to the pddppd \to dp process.Comment: 17 pages including 6 figures and 1 table v2: minor changes; v3: minor change of author list; v4: changes in accordance with referee remark

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
    corecore