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Abstract

A study of the deuteron breakup reaction pd → (pp)n with forward emission of a

fast proton pair with small excitation energy Epp < 3 MeV has been performed using

the ANKE spectrometer at COSY–Jülich. An exclusive measurement was carried

out at six proton–beam energies Tp = 0.6, 0.7, 0.8, 0.95, 1.35, and 1.9 GeV by

reconstructing the momenta of the two protons. The differential cross section of the

breakup reaction, averaged up to 8◦ over the cm polar angle of the total momentum

of the pp pairs, has been obtained. Since the kinematics of this process is quite

similar to that of backward elastic pd → dp scattering, the results are compared to

calculations based on a theoretical model previously applied to the pd → dp process.

Key words: Deuteron breakup; Short–range nucleon–nucleon interaction

PACS: 13.75.Cs, 25.10.+s, 25.40-h.

1 Introduction

Backward elastic pd → dp scattering at energies of several hundred MeV is

one of the simplest hadron–nucleus processes with high transferred momen-

tum. It has been studied for more than 30 years both experimentally and
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1 This paper is dedicated to A. Petrus who was killed in a tragic accident on May

19, 2002.
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theoretically with the aim of extracting information about the short–range

structure of the NN interaction and the dynamics of high–momentum transfer

in few–nucleon systems. Besides the one–nucleon–exchange (ONE) mechanism

(Fig. 1), a number of concepts have been discussed in this context, e.g. the

presence of nucleon resonances (N∗) inside the deuteron [1], the importance

of virtual pions [2], and three–baryon resonances [3] (for a review see Ref.

[4]). Only at low energies, where ONE dominates, are the data on differen-
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Fig. 1. Mechanisms included in the ONE+SS+∆ model for the pd → (pp)n

(pd → dp) processes.

tial cross section, tensor analyzing power T20, and spin transfer coefficient κ,

reasonably well described [4-8]. At higher energies, where internal momenta

above 0.3 GeV/c are probed in the deuteron, the dynamics becomes more

complicated, because of a possible excitation of N∗ and ∆ resonances in the

intermediate states. These effects are taken into account to some extent in the

one–pion–exchange model, but when adding the ONE amplitude, the problem

of double counting arises [2,9,10]. The excitation of the ∆(1232) resonance in

the intermediate state (∆ mechanism) is explicitly included in a model [3,5],

which also takes into account coherently ONE and single pN scattering (SS)

in a consistent way (Fig. 1). This model, improved in Ref. [11] with respect to

the ∆ contribution through the analysis of pp → pnπ+ data [12], describes the

3



gross features of the pd → dp spin–averaged differential cross section. After

further refinement also the tensor analyzing power at beam energies below

0.5 GeV is qualitatively reproduced [5]. Above the region, where the ∆(1232)

dominates, the role of intermediate excitations of heavier baryon resonances

is expected to increase and this makes the theoretical interpretation of this

process much more ambiguous.

In view of the above complications, it would be very important to study a

similar pd process, where contributions from the N∗ and ∆ resonance excita-

tion are suppressed. For that purpose, an appropriate reaction is the deuteron

breakup

p + d → (pp) + n

with emission of the two protons in forward direction (θpp ≈ 0◦) at low excita-

tion energy Epp < 3 MeV. With the neutron emitted backward, the kinematics

of this reaction is quite close to that of pd backward elastic scattering. There-

fore, the same mechanisms can be applied in the analysis of the process as

well. According to the ONE+SS+∆ model calculations [13,14], which implic-

itly include the pp final–state interaction (fsi), the pp pair is expected to be

mainly in a 1S0 state. Due to isospin invariance, the isovector nature of the

pp pair leads to a suppression of the amplitude of the ∆ mechanism by a

factor three in comparison to the ONE amplitude for all partial waves of the

pp system [13]. The same suppression factor also applies for a broad class of

diagrams with isovector meson–nucleon rescattering in the intermediate state,

including excitation of N∗ resonances [15]. As a result, the contribution of the

ONE mechanism, which is sensitive to the NN potential at short distances,

becomes more pronounced than in pd → dp scattering. Furthermore, the node

in the half–off–shell pp scattering amplitude in the 1S0 state at an off–shell
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momentum of about 0.4 GeV/c leads to a dip of the differential cross section

of the deuteron breakup at 0.7–0.8 GeV beam energy [13,16]. At higher ener-

gies of 1–3 GeV, the cross section is dominated by the ONE mechanism and

decreases rather smoothly.

Another attractive feature of the process is the simplicity of its phenomeno-

logical description, since at zero degrees it requires only two spin amplitudes.

Therefore, a model–independent amplitude analysis becomes possible through

the measurement of a few polarization observables. As a first step, we have

measured the differential cross section at six beam energies in the interval

0.6–1.9 GeV, which covers the region of the dip predicted by the ONE+SS+∆

model, thereby probing a wide range of high internal momenta of the NN

system (qNN ∼ 0.3–0.6 GeV/c).

2 Experiment

The experiment was performed at incident proton beam energies of 0.6, 0.7,

0.8, 0.95, 1.35, and 1.9 GeV with the spectrometer ANKE [17] at the in-

ternal beam of the COoler SYnchrotron COSY–Jülich [18]. In Fig. 2 those

parts of the spectrometer are shown that are of concern for the present ex-

periment. The protons stored in the COSY ring (∼ 3 · 1010) impinged on a

deuterium cluster–jet target [19], which provided a target thickness of about

1.3 · 1013 atoms/cm2. The produced charged particles, after passing the mag-

netic field of the dipole D2, were registered by a set of three multiwire propor-

tional chambers (MWPC) and a scintillation–counter hodoscope. Each wire

chamber contains a horizontal and a vertical anode–wire plane (1 mm wire

spacing), and two planes of inclined strips, that allowed us to obtain the re-
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Fig. 2. Top view of the experimental setup with the forward detection system of the

ANKE spectrometer.

quired resolution of ≈ 0.8–1.2% (rms) in the momentum range 0.6–2.7 GeV/c.

The hodoscope consists of two layers, containing 8 and 9 vertically oriented

scintillators (4 to 8 cm width, 1.5 to 2 cm thickness). It provided a trigger

signal, an energy loss measurement, and allowed for the determination of the

differences in arrival times for particle pairs hitting different counters. Off–line

processing of the amplitude data permitted the measurement of the energy–

loss with an accuracy of 10 to 20% (FWHM), and of the time–of–flight differ-

ence of events with two registered particles with a precision of 0.5 ns (rms).

A separate measurement with a hydrogen target at beam energies of 0.5 and

2.65 GeV was carried out to calibrate the energy loss in the counters and the

momentum scale via the processes pp → pp, pp → dπ+, and pp → pnπ+.

The horizontal acceptance of the setup is shown in Fig. 3. The vertical accep-

tance corresponds to ±3.5◦. The trigger rate resulted mainly from elastically

and quasi–elastically scattered protons, from protons associated with meson

production and, at beam energies below 1 GeV, from deuterons produced in
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Fig. 3. Plot of the acceptance of the setup from a MC simulation showing polar

angle versus momentum at 0.6 GeV beam energy. Θxz is the scattering angle of the

emitted particle projected onto the median plane of the spectrometer. The curves

show kinematical loci for π+, p, and d from the indicated processes. The symbol

[pp] denotes pp pairs with zero excitation energy, while the grey area contains those

of Epp < 3 MeV.

the pp → dπ+ reaction. Events with two registered particles contributed little

to the total trigger rate and were selected off–line. Protons from the breakup

process pd → ppn with an excitation energy Epp < 3 MeV could be detected
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with the experimental setup for laboratory polar angles between 0 and 7◦ at

all energies.

Among those events with two registered particles, breakup events are iden-

tified by the determination of the missing–mass value, calculated under the

assumption that these particles are protons. At all energies the missing–mass

spectra reveal a well defined peak at the neutron mass with an rms value of

about 20 MeV (Fig. 4). The peak is clearly separated from the one at 1.1–
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Fig. 4. Missing–mass distribution at Tp = 0.8 GeV of all identified proton pairs

(unfilled histogram). The black histogram denotes identified pp pairs with excita-

tion energy of less than 3 MeV. The inset shows the distribution near the neutron

mass without particle identification for pairs with Epp < 3 MeV. The background

contribution is shown in grey.
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1.2 GeV/c2, caused by proton pairs from the pd → ppπ0n or pd → ppπ−p

reactions. A direct identification of the particle type is possible for those

events for which the two particles hit different counters in the hodoscope.

These amount to about 60% of all events in the peak at the neutron mass. For

Epp < 3 MeV, the fraction varies from 60 to 22% for Tp = 0.6 to 1.9 GeV. The

time–of–flight difference ∆t measured in the hodoscope was compared to the

difference ∆t(p1, p2) obtained from the reconstructed particle momenta p1 and

p2, again assuming that the two particles are protons. Applying a 2σ cut to the

peak of the ∆t − ∆t(p1, p2) distribution, proton pairs could be selected such

that the contribution from other pairs was less than 1%. When both tracks

hit the same counter, the energy loss distributions were analyzed and found to

be in agreement with the assumption that both registered particles were pro-

tons. However, the energy loss cut was not used, since the proton separation

from other particles was not quite perfect. In this case we relied on the fact

that misidentified pairs (pπ+, dπ+, dp or 3Hπ+) show up only at substantially

higher missing mass values and therefore cannot contribute to the peak at the

neutron mass. For background subtraction, the spectra in the vicinity of the

neutron mass were fitted by the sum of a Gaussian and a straight line (see

inset in Fig. 4). The number of proton pairs and the signal–to–background

ratio Nsig/Nbg were determined in a ±2σ range around the neutron mass. The

distribution of distances between hits by the proton pairs (Epp < 3 MeV) in

the MWPC’s yields rms values of 4.9 and 3.3 cm, at 0.6 and 1.9 GeV beam

energies, respectively. Therefore, a significant loss of pp pairs due to the two

tracks being too close is expected to occur only below Epp = 0.2 MeV. Since a

resolution of 0.2 (0.3) MeV at Epp = 0.5 (3) MeV was achieved, proton pairs

with Epp < 3 MeV could be reliably selected.

The integrated luminosity Lint was obtained by counting protons, elastically

9



and quasi–elastically scattered at small laboratory angles between 5 and 10◦.

It is not possible to distinguish these processes experimentally at ANKE, but

the achieved momentum resolution makes possible a clean separation from

the meson production continuum. The number of counts obtained was re-

lated to a simulation using the calculated small angle pd → pX cross section.

The calculation takes into account the sum of elastic and inelastic terms in

closure approximation of the Glauber–Franco theory [20], which includes the

sum over the complete set of final pn states. In order to estimate the ob-

tained accuracy, the cross sections, calculated for elastic and quasielastic pd

scattering within the same framework, were compared with the experimental

data of Refs. [21,22,23,24,25] and [26] respectively, in the appropriate energy

and angle range. The resulting χ2/n.d.f.=0.85 (n.d.f.=64) and χ2/n.d.f.=0.73

(n.d.f.=8), respectively, yield a 7% uncertainty of the calculated cross sections.

The total errors of the luminosities of Table 1 take into account this uncer-

tainty and other systematic errors of 5%, resulting from a small variation of

the derived luminosity with the polar angle, caused by the position–dependent

efficiency of the MWPC.

3 Results and discussion

The data allowed us to deduce the three–fold differential cross sections

d3σ/(d cos θcm
pp · dφcm

pp · dEpp), where θcm
pp and φcm

pp are the polar and azimuthal

cm angles of the total momentum of the pp pair, respectively. (The neutron

emission angles correspond to 180◦−θcm
pp ). Figure 5 shows the excitation energy

distribution of the events for θcm
pp from 0 to 7◦ and φcm

pp from 0 to 360◦, summed

over the beam energies 0.6, 0.7, and 0.8 GeV. The shape of the spectrum is
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well reproduced (χ2/n.d.f.=0.99) by the phase space distribution multiplied

by the Migdal–Watson factor describing the 1S0 fsi [27] including Coulomb

effects. The event distribution over the angle between the relative momentum
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Fig. 5. Excitation energy distribution in comparison with the theoretical expectation

(histogram) from fsi.

of the proton pair and its total momentum is nearly isotropic, but would allow

a few percent of nonisotropic contamination to the differential cross section.

The counting rates at high energies (1.35 and 1.9 GeV) were rather low.

Therefore, in order to present the energy dependence of the process for all

measured beam energies, the three–fold cross section was integrated over the
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interval 0 < Epp < 3 MeV and averaged over the angular range 0 < θcm
pp < 8◦,

resulting in
(

dσ

dΩcm
pp

)

=
Ncor

Lint · ∆Ωcm
pp

·
Nsig

Nsig + Nbg

· f (1)

(Table 1). Here Ncor =
∑N

i=1 1/(Ai · εi), N is the number of selected proton

pairs, Ai and εi correspond to acceptance and detector efficiency for regis-

tration of the i–th pair. The correction factor f , close to unity, accounts for

several soft cuts applied during data processing. The acceptance was calcu-

lated as a function of Epp and θcm
pp assuming a uniform distribution in φcm

pp

and isotropy in the two proton system. The average detector efficiency was

ε ≈ 90%.

The differential cross section obtained as a function of beam energy is shown

in Fig. 6. The energy dependence of the measured cross section is similar to

that of the pd → dp process, but its absolute value is smaller by about two or-

ders of magnitude. There is no indication for the predicted dip in the breakup

cross section. A comparison of the experimental results with the ONE+SS+∆

calculations is shown also. At the lowest energies (0.6–0.7 GeV) the results for

the Reid Soft Core (RSC) [31] and the Paris [32] potential reproduce rather

well the measured breakup cross section. This energy range corresponds to

the region where the ∆(1232) dominates in the pd → dp cross section. The

theoretical curves for the breakup process exhibit a shoulder at ∼ 0.5 GeV as

well. This indicates that in spite of the isospin suppression, the contribution

from the ∆ is still important because of the nearby minimum of the ONE

cross section. At higher energies, including the region of the expected dip at

0.7–0.8 GeV, the model is in strong disagreement with the data. One should

note that the ONE+SS+∆ model underestimates the pd → dp cross section

12



Table 1

Summary of the experimental results. Tp denotes the beam energy, Lint the inte-

grated luminosity, N the number of events with Epp < 3 MeV and pair emission

angle θcm
pp < 8◦, Ncor gives the number of events N , corrected for acceptance and

detector efficiency, Nsig/(Nsig + Nbg) is the background correction, and dσ/dΩcm
pp

denotes the cross section (see Eq.(1)).

Tp Lint N Ncor
Nsig

Nsig+Nbg
dσ/dΩcm

pp ± σstat
± σsyst

[GeV] [cm−2
· 1034] [µb/sr]

0.6 1.41±0.12 339 1403 0.94 ± 0.05 1.72 ± 0.09 ± 0.17

0.7 1.93±0.17 227 872 0.87 ± 0.05 0.72 ± 0.05 ± 0.08

0.8 2.38±0.20 305 1050 0.89 ± 0.04 0.72 ± 0.04 ± 0.07

0.95 1.28±0.11 112 337 0.85 ± 0.07 0.41 ± 0.04 ± 0.05

1.35 0.69±0.06 16 45 0.79 ± 0.22 0.10 ± 0.02 ± 0.03

1.90 0.74±0.07 9 18 0.62 ± 0.27 0.03 ± 0.01 ± 0.01

in the dip region (Tp ∼ 0.8 GeV) as well [33]. A possible explanation for this

discrepancy is discussed in Ref. [4], where the contributions of NN∗ compo-

nents of the deuteron wave function are evaluated on the basis of a six quark

model. Correspondingly for the breakup, effects from N∗ exchanges and the

contribution of the ∆∆ component of the deuteron can possibly increase the

cross section in this region and fill the dip. Other sizable contributions may

arise from intermediate states of the pp pair at Epp > 3 MeV, de–excited by

rescattering on the neutron in the final state.
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4 Conclusion

We report here the first measurement of the cross section of the pd → (pp)n

reaction with a fast singlet pp pair emitted in forward direction at beam ener-

gies between 0.6 and 1.9 GeV. The measurement was carried out in collinear

kinematics close to those of pd backward elastic scattering. The known mech-

anisms of the pd → dp process describe reasonably well the measured breakup

cross section at low energies (0.6–0.7 GeV). At higher energies the calculations

depend on the NN interaction potential at short distances and disagree with

the data. Possible shortcomings of the model may be attributed at present to

an inappropriate choice of the reaction dynamics or inadequate assumptions

about the short–range structure of the deuteron. The latter could be reme-

died by more detailed calculations using modern NN potentials, which are in

progress.

We would like to emphasize that a study of the pd → (pp)n reaction with

detection of pp 1S0 pairs provides a new tool to investigate the short–range

NN interaction. For further insight, additional data, in particular polariza-

tion measurements, are needed to provide a complete set of observables. These

experiments are foreseen at ANKE.
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Fig. 6. Measured cross section of the process pd → (pp) + n for Epp < 3 MeV

versus proton–beam energy. The error bars include both statistical and systematic

uncertainties (Table 1). Shown also are the pd → dp data (dσ/dΩcm
p ) taken from

Refs. [28–30]. The calculations with the ONE+SS+∆ model are performed using

the NN potentials RSC (dotted line) and Paris (solid) [16] (note also Ref. [33]).

The individual contributions of the ONE+SS+∆ model with the Paris potential are

shown by thin full lines. The upper scale indicates the internal momentum of the

nucleons inside the deuteron for ONE in collinear kinematics at Epp = 3 MeV.
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