700 research outputs found

    Formation of Kinneyia via shear-induced instabilities in microbial mats

    Get PDF
    Kinneyia are a class of microbially mediated sedimentary fossils. Characterized by clearly defined ripple structures, Kinneyia are generally found in areas that were formally littoral habitats and covered by microbial mats. To date, there has been no conclusive explanation of the processes involved in the formation of these fossils. Microbial mats behave like viscoelastic fluids. We propose that the key mechanism involved in the formation of Kinneyia is a Kelvin–Helmholtz-type instability induced in a viscoelastic film under flowing water. A ripple corrugation is spontaneously induced in the film and grows in amplitude over time. Theoretical predictions show that the ripple instability has a wavelength proportional to the thickness of the film. Experiments carried out using viscoelastic films confirm this prediction. The ripple pattern that forms has a wavelength roughly three times the thickness of the film. This behaviour is independent of the viscosity of the film and the flow conditions. Laboratory-analogue Kinneyia were formed via the sedimentation of glass beads, which preferentially deposit in the troughs of the ripples. Well-ordered patterns form, with both honeycomb-like and parallel ridges being observed, depending on the flow speed. These patterns correspond well with those found in Kinneyia, with similar morphologies, wavelengths and amplitudes being observed

    Design and characterization of all-cryogenic low phase-noise sapphire K-band oscillator for sattelite communication

    Get PDF
    An all-cryogenic oscillator consisting of a frequency-tunable sapphire resonator, a high-temperature superconducting filter and a pseudomorphic high electron-mobility transistor amplifier was designed for the K-band frequency range and investigated. Due to the high quality factor of the resonator above 1000 000 and the low amplifier phase noise of approximately -133 dBc/Hz at a frequency offset of 1kHz from the carrier, we have achieved oscillator phase-noise values superior to quartz-stabilized oscillators at the same carrier frequency for offset frequencies higher than 100 Hz. In addition to, low phase noise, our prototype oscillator possesses mechanical and electrical frequency tunability. We have implemented a two-step electrical tuning arrangement consisting of a varactor phase shifter integrated within the amplifier circuit (fine tuning by 5'kHz) and a dielectric plunger moved by a piezomechanical transducer inside the resonator housing (course tuning by 50 kHz). This tuning range is sufficient for phase locking and for electronic compensation of temperature drifts occurring during operation of the device employing a miniaturized closed-cycle Stirling-type cryocooler

    AMST: Alignment to Median Smoothed Template for Focused Ion Beam Scanning Electron Microscopy Image Stacks

    Get PDF
    Alignment of stacks of serial images generated by focused ion Beam Scanning electron Microscopy (FIB-SEM) is generally performed using translations only, either through slice-by-slice alignments with SIFT or alignment by template matching. However, limitations of these methods are two-fold: the introduction of a bias along the dataset in the z-direction which seriously alters the morphology of observed organelles and a missing compensation for pixel size variations inherent to the image acquisition itself. These pixel size variations result in local misalignments and jumps of a few nanometers in the image data that can compromise downstream image analysis. We introduce a novel approach which enables affine transformations to overcome local misalignments while avoiding the danger of introducing a scaling, rotation or shearing trend along the dataset. Our method first computes a template dataset with an alignment method restricted to translations only. This pre-aligned dataset is then smoothed selectively along the z-axis with a median filter, creating a template to which the raw data is aligned using affine transformations. Our method was applied to FIB-SEM datasets and showed clear improvement of the alignment along the z-axis resulting in a significantly more accurate automatic boundary segmentation using a convolutional neural network

    Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease

    Get PDF
    Peripheral artery disease (PAD) is an atherosclerotic disease that impairs blood flow and muscle function in the lower limbs. A skeletal muscle myopathy characterized by mitochondrial dysfunction and oxidative damage is present in PAD; however, the underlying mechanisms are not well established. We investigated the impact of chronic ischemia on skeletal muscle microcirculatory function and its association with leg skeletal muscle mitochondrial function and oxygen delivery and utilization capacity in PAD. Gastrocnemius samples and arterioles were harvested from patients with PAD (n = 10) and age-matched controls (Con, n = 11). Endothelium-dependent and independent vasodilation was assessed in response to flow (30 ÎŒL·min−1), acetylcholine, and sodium nitroprusside (SNP). Skeletal muscle mitochondrial respiration was quantified by high-resolution respirometry, microvascular oxygen delivery, and utilization capacity (tissue oxygenation index, TOI) were assessed by near-infrared spectroscopy. Vasodilation was attenuated in PAD (P \u3c 0.05) in response to acetylcholine (Con: 71.1 ± 11.1%, PAD: 45.7 ± 18.1%) and flow (Con: 46.6 ± 20.1%, PAD: 29.3 ± 10.5%) but not SNP (P = 0.30). Complex I + II state 3 respiration (P \u3c 0.01) and TOI recovery rate were impaired in PAD (P \u3c 0.05). Both flow and acetylcholine-mediated vasodilation were positively associated with complex I + II state 3 respiration (r = 0.5 and r = 0.5, respectively, P \u3c 0.05). Flow-mediated vasodilation and complex I + II state 3 respiration were positively associated with TOI recovery rate (r = 0.8 and r = 0.7, respectively, P \u3c 0.05). These findings suggest that chronic ischemia attenuates skeletal muscle arteriole endothelial function, which may be a key mediator for mitochondrial and microcirculatory dysfunction in the PAD leg skeletal muscle. Targeting microvascular dysfunction may be an effective strategy to prevent and/or reverse disease progression in PAD

    Predictions of anisotropic thermal transport in non-linear-non-isothermal polymeric flows

    Get PDF
    Trabajo presentado en: 90th Annual Meeting of The Society of Rheology, 14 a 18 de ocubre de 2018, HoustonOver the last decades, significant efforts have been dedicated to include more complete rheological constitutive models into finite elements methods to simulate the complex flows in polymer manufacturing. However, while a remarkable portion of these processes are intrinsically non-isothermal, the study and implementation of non-isothermal flows has been very limited. The degree of complexity of such calculations is considerably increased by: 1) the addition to the problem of the energy equation; 2) a strong coupling to the momentum balance due to a highly temperature-dependent rheological behavior and 3) the strong influence that deformation-induced molecular orientation has on the thermo-physical properties of polymeric materials. Experimental evidence has shown that thermal conductivity becomes anisotropic in polymers subjected to deformation. Furthermore, a linear relationship between the thermal conductivity and stress tensors has been found to be universal (i.e. independent of polymer chemistry) and to extend beyond the finite extensibility limit. We make use of molecular simulation techniques to gain insights into the transport mechanisms behind these surprising results. On a more practical level, our work combines the thermal conductivity/stress response with two recent constitutive equations proposed for linear (Rolie Poly) and branched (eXtended Pom-Pom) polymers to venture predictions for the anisotropy in thermal conductivity in a number of interesting flows. These two constitutive models provide accurate descriptions of the available non-linear rheology and thermal transport data. Remarkably, our approach allows implementation of anisotropy in thermal conductivity into finite elements simulations without adding any adjusting parameters to those of the viscoelastic model. Our work represents a first step towards a molecular-to-continuum methodology for the simulation of industrially relevant non-isothermal flows to predict flow characteristics and the material final properties after processingMolecular to Continuum Investigation of Anisotropic Thermal Transport in Polymers “MCIATTP” Project # 750985Horizon 2020, “MCIATTP” Project # 75098

    The statistics of natural hand movements.

    Get PDF
    Humans constantly use their hands to interact with the environment and they engage spontaneously in a wide variety of manual activities during everyday life. In contrast, laboratory-based studies of hand function have used a limited range of predefined tasks. The natural movements made by the hand during everyday life have thus received little attention. Here, we developed a portable recording device that can be worn by subjects to track movements of their right hand as they go about their daily routine outside of a laboratory setting. We analyse the kinematic data using various statistical methods. Principal component analysis of the joint angular velocities showed that the first two components were highly conserved across subjects, explained 60% of the variance and were qualitatively similar to those reported in previous studies of reach-to-grasp movements. To examine the independence of the digits, we developed a measure based on the degree to which the movements of each digit could be linearly predicted from the movements of the other four digits. Our independence measure was highly correlated with results from previous studies of the hand, including the estimated size of the digit representations in primary motor cortex and other laboratory measures of digit individuation. Specifically, the thumb was found to be the most independent of the digits and the index finger was the most independent of the fingers. These results support and extend laboratory-based studies of the human hand

    A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    Get PDF
    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials

    An interval of high salinity in ancient Gale crater lake on Mars

    Get PDF
    Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations
    • 

    corecore