93 research outputs found

    Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Get PDF
    Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Influence of handaxe size and shape on cutting efficiency: a large-scale experiment and morphometric analysis

    Get PDF
    Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds, and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues

    The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration.

    Get PDF
    Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
    • 

    corecore