100 research outputs found

    Notes sobre les traduccions franceses de Ramon Llull

    Get PDF

    Notes sobre les traduccions franceses de Ramon Llull

    Get PDF

    The link between infall location, early disc size, and the fraction of self-gravitationally fragmenting discs

    Get PDF
    Context. Many protoplanetary discs are self-gravitating early in their lives. If they fragment under their own gravity, they form bound gaseous clumps that can evolve to become giant planets. Today, the fraction of discs that undergo fragmentation, and therefore also the frequency of conditions that may lead to giant planet formation via gravitational instability, is still unknown. Aims. We study the formation and evolution of a large number of star-disc systems, focusing on the early sizes of the discs and their likelihood to fragment. We investigate how the fraction of discs that fragments depends on the disc-size distribution at early times. Methods. We performed a population synthesis of discs from formation to dispersal. Whilst varying the infall radius, we study the relationship between early disc size and fragmentation. Furthermore, we investigate how stellar accretion heating affects the fragmentation fraction. Results. We find that discs fragment only if they become sufficiently large early in their lives. This size depends sensitively on where mass is added to the discs during the collapse of their parent molecular cloud core. Infall locations derived from pure hydrodynamic and non-ideal magnetised collapse simulations lead to large and small discs, respectively, and 22 and 0% fragmentation fractions, respectively, in populations representative of the initial mass function; however, the resulting synthetic disc size distribution is larger and smaller, respectively, than the observed Class 0 disc size distribution. By choosing intermediate infall locations, leading to a synthetic disc size distribution that is in agreement with the observed one, we find a fragmentation fraction of between 0.1 and 11%, depending on the efficiency of stellar accretion heating of the discs. Conclusions. We conclude that the frequency of fragmentation is strongly affected by the early formation process of the disc and its interaction with the star. The early disc size is mainly determined by the infall location during the collapse of the molecular cloud core and controls the population-wide frequency of fragmentation. Stellar accretion heating also plays an important role in fragmentation and must be studied further. Our work is an observationally informed step towards a prediction of the frequency of giant planet formation by gravitational instability. Upcoming observations and theoretical studies will further our understanding of the formation and early evolution of discs in the near future. This will eventually allow us to understand how infall, disc morphology, giant planet formation via gravitational instability, and the observed extrasolar planet population are linked

    The influence of infall on the properties of protoplanetary discs : Statistics of masses, sizes, lifetimes, and fragmentation

    Get PDF
    Context. The properties of protoplanetary discs determine the conditions for planet formation. In addition, planets can already form during the early stages of infall. Aims. We constrain physical quantities such as the mass, radius, lifetime, and gravitational stability of protoplanetary discs by studying their evolution from formation to dispersal. Methods. We perform a population synthesis of protoplanetary discs with a total of 50 000 simulations using a 1D vertically integrated viscous evolution code, studying a parameter space of final stellar mass from 0.05 to 5 Msol . Each star-and-disc system is set up shortly after the formation of the protostar and fed by infalling material from the parent molecular cloud core. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. Results. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of ∼0.3 and 0.1 Msol for systems based on hydrodynamic or MHD initial conditions, respectively. In systems characterised by a final stellar mass ∼1 Msol , we find disc masses of ∼0.7 Msol for the “hydro” case and ∼0.2 Msol for the “MHD” case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, ≈5–7 Myr on average. This is despite our choice of a high value of 10^-2 for the background viscosity α-parameter. In addition, we find that fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation may be suppressed entirely. Conclusions. Our work draws a picture quite different from the one often assumed in planet formation studies: protoplanetary discs are more massive and live longer. This means that more mass is available for planet formation. Additionally, when fragmentation occurs, it can affect the disc’s evolution by transporting large amounts of mass radially. We suggest that the early phases in the lives of protoplanetary discs should be included in studies of planet formation. Furthermore, the evolution of the central star, including its accretion history, should be taken into account when comparing theoretical predictions of disc lifetimes with observations

    St. Vicent Ferrer’s Catalán sermon on St. Martin of Tours

    Get PDF
    One of the most widely venerated saints in the Middle Ages was St. Martin of Tours whose cult continues to this day in many parts of the world. In the Middle Ages, he became as popular as other major saints such as Thomas Becket, Santiago de Compostela and the Virgin Mary. St. Martin’s cult became very prominent in the Iberian Peninsula before and after the emergence of the cult of Santiago de Compostela. In St. Vicent Ferrer’s voluminous sermons this one in Catalán is dedicated to this most venerated Gallic saint. The most important late antique and early medieval sources that form the background of this sermon are by Sulpicius Severus- the Gallus and Vita Sancti Martini. In the high Middle Ages, however, his cult was popularized through the Legenda Aurea written by the Dominican Jacobus of Voragine, who synthesized Sulpicius’ two works on St. Martin. Moreover, St. Vicent preached not to make any major doctrinal breakthroughs- his main interest was to evangelize, not to write academic theology- he nevertheless exhibited great creativity. The object of this study is St. Vicent’s Catalán sermon Alius Sermo Sancti Martini, CXXXIV.Uno de los santos más venerados en la edad media fue San Martín de Tours, cuyo culto continúa hasta hoy en muchas partes del mundo. En la edad media, se hizo tan popular como otros grandes Santos: Thomas Becket, Santiago de Compostela y la Virgen María. El culto de San Martín se hizo prominente en la Península Ibérica antes y después de la aparición del culto a Santiago de Compostela. En los sermones voluminosos de San Vicente Ferrer esta uno en Catalán que está dedicado a este santo tan venerado de Galia. Las fuentes más importantes procedentes de la antigu.edad tardía y principios medievales que forma el fondo de este sermón son Gallus y la Vita Sancti Martini de Sulpicio Severo. Sin embargo, en la alta edad media, su culto se popularizó a través de la Legenda Aurea escrita por el dominico Jacobus de Vorágine, que sintetiza las dos obras de Sulpicio. Por otra parte, San Vicente predicó no para realizar grandes avances doctrinales- su principal interés fue predicar el evangelio, no escribir teología académica. Sin embargo, exhibió gran creatividad. El objeto de este estudio es el sermón en Catalán de San Vicente Alius Sermo Sancti Martini, CXXI

    Population of giant planets around B stars from the first part of the BEAST survey

    Full text link
    Exoplanets form from circumstellar protoplanetary disks whose fundamental properties (notably their extent, composition, mass, temperature, and lifetime) depend on the host star properties, such as their mass and luminosity. B stars are among the most massive stars and their protoplanetary disks test extreme conditions for exoplanet formation. This paper investigates the frequency of giant planet companions around young B stars (median age of 16 Myr) in the Scorpius-Centaurus (Sco-Cen) association, the closest association containing a large population of B stars. We systematically searched for massive exoplanets with the high-contrast direct imaging instrument SPHERE using the data from the BEAST survey, which targets a homogeneous sample of young B stars from the wide Sco-Cen association. We derived accurate detection limits in the case of non-detections. We found evidence in previous papers for two substellar companions around 42 stars. The masses of these companions are straddling the sim 13 Jupiter mass deuterium burning limit, but their mass ratio with respect to their host star is close to that of Jupiter. We derived a frequency of such massive planetary-mass companions around B stars of 11_ , accounting for the survey sensitivity. The discoveries of substellar companions b and B happened after only a few stars in the survey had been observed, raising the possibility that massive Jovian planets might be common around B stars. However, our statistical analysis shows that the occurrence rate of such planets is similar around B stars and around solar-type stars of a similar age, while B-star companions exhibit low mass ratios and a larger semi-major axis

    Author response

    Get PDF
    Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils. DOI: http://dx.doi.org/10.7554/eLife.14698.00
    corecore