
*For correspondence: vincent.

fernandez@esrf.fr (VF); xavier.

neto@lnbio.cnpem.br (JXN)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 10

Received: 25 January 2016

Accepted: 09 March 2016

Published: 19 April 2016

Reviewing editor: Diethard

Tautz, Max-Planck Institute for

Evolutionary Biology, Germany

Copyright Maldanis et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Heart fossilization is possible and informs
the evolution of cardiac outflow tract in
vertebrates
Lara Maldanis1,2†, Murilo Carvalho2,3†, Mariana Ramos Almeida4,
Francisco Idalécio Freitas5, José Artur Ferreira Gomes de Andrade6,
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11Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de
Janeiro, Brazil; 12Brazilian Nanotechnology National Laboratory, Campinas, Brazil;
13European Synchrotron Radiation Facility, Grenoble, France

Abstract Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated

enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a

multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-

valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac

preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using

X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus

arteriosus containing at least five valve rows. This represents a transitional morphology between

the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow

tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and

suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather

than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac

evolution in fossils.

DOI: 10.7554/eLife.14698.001

Introduction
The hearts of ray-finned fishes (actinopterygians) are presently described as a succession of four

muscular chambers that perform inflow (sinus venosus and atrium) and outflow (ventricle and conus

arteriosus) roles, followed by the bulbus arteriosus, a terminal, non-chambered, elastic cardiac seg-

ment (Simões-Costa et al., 2005; Grimes et al., 2006; Durán et al., 2008).
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In basal actinopterygians, the conus arteriosus dominates the cardiac outflow, while in teleosts, it

is the bulbus arteriosus that prevails, a notion that harks back to Gegenbaur (1866) and before. The

conus arteriosus displays multiple fibrous valve rows, a character state that represents the general

gnathostome condition, primitively retained in basal actinopterygian groups (Durán et al., 2008;

Boas, 1880; Boas, 1901; Schib et al., 2002; Xavier-Neto et al., 2010; Parsons, 1929;

Icardo et al., 2002a; Durán et al., 2014; Icardo et al., 2002b). The multiple conal valve rows of

basal actinopterygians prevent backflow and protect the delicate gill vessels from the elevated pul-

sations generated by the ventricle (Satchell and Jones, 1967). In contrast, in derived actinoptery-

gians such as the teleost zebrafish, the valveless bulbus arteriosus protects the gills through its

prominent elastic properties (i.e. functioning as a windkessel [Farrell, 1979]). Thus, teleost hearts

display only one valve row at the bulbo-ventricular transition, which is now regarded as an evolution-

ary remnant of the conus arteriosus (Grimes et al., 2006).

The transition from a heart packed with dozens of outflow tract valves in basal actinopterygians,

such as in the genus Polypterus (Durán et al., 2014), to the single valve row in the cardiac outflow

tract of derived actinopterygians, such as in the cypriniform teleost Danio rerio (the zebrafish)

(Grimes and Kirby, 2009) represents a celebrated, hundred-year-old, case of secondary cardiac sim-

plification. The emphasis on the bulbus arteriosus, rather than on the conus arteriosus in teleosts,

and the concurrent reduction in the number of outflow valve rows are presently almost completely

unconstrained in evolutionary and developmental times. We know that the primitive actinopterygian

Polypterus diverged from other actinopterygian lineages (including the zebrafish) by about 390 Mya

(Takeuchi et al., 2009) and that the elastic bulbus arteriosus of teleosts represents a very late onto-

genetic addition, being added to the heart only after cardiac chambers are formed (Grimes et al.,

2006; Grimes and Kirby, 2009). With such limited information, it is impossible to answer whether

outflow tract simplification in teleosts represented another case of phyletic gradualism, or resulted

from drastic developmental effects. Significant morphological changes are sometimes associated

with major genetic changes, such as large-scale gene duplications and/or changes in the function of

genes with major developmental effects, both known to have taken place in teleost evolution

(Shapiro et al., 2004; Shubin et al., 1997). Knowledge of morphological transitions between charac-

ter states is critical to the construction of any evolutionary hypothesis. Thus, the first steps toward

eLife digest Modern research has majorly advanced our understanding of how the heart works,

and has led to new therapies for cardiac diseases. However, little is known about how the heart has

evolved throughout the history of animals with backbones – a group that is collectively referred to

as vertebrates. This is partly because the heart is made from soft muscle tissue, which does not

fossilize as often as harder tissues such as bones.

Even though fossils of soft tissues are rare, paleontologists have already unearthed fossils of

other soft organs such as the stomach and umbilical cord. These discoveries suggested that there

was hope of finding fossil hearts, and now Maldanis, Carvalho et al. have indeed discovered fossil

hearts in two specimens of an extinct species of bony fish called Rhacolepis buccalis. These fish were

alive over 113 million years ago during the Cretaceous period, in an area that is now modern-day

Brazil.

Like all known vertebrates, these R. buccalis fossils have valves between the heart and the major

artery that carries blood out of the heart. Such valves are vital because they prevent pumped blood

from flowing back into the heart. However, oddly, R. buccalis fossils show five of these valves, which

is more than any advanced bony fish that is alive today. Comparing this with the situation in other

fish species suggests that vertebrate hearts gradually evolved to become progressively simpler.

This discovery shows that it is possible to study heart evolution with fossils. Maldanis, Carvalho

et al. hope that their findings will stimulate researchers from all over the world to examine the fossils

of well-preserved animals in search of clues to help reconstruct the major steps in the evolution of

the vertebrate heart.

DOI: 10.7554/eLife.14698.002
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the understanding of any evolutionary modification ideally involve the discovery of intermediate

morphologies.

Unfortunately, there are no universally recognized descriptions of fossilized vertebrate cham-

bered hearts (Xavier-Neto et al., 2010; Janvier, 1996; Rowe et al., 2001; Fisher et al., 2000;

Cleland et al., 2011). Although provocative clues accumulate (Janvier, 1996; Rowe et al., 2001;

Fisher et al., 2000; Cleland et al., 2011; Shu et al., 2003; Carvalho and Maisey, 1996,

Janvier et al., 1991), none of the specimens described so far retained enough original attributes to

establish beyond dispute that cardiac preservation is possible. Part of the problem is that the heart

is formed by soft tissues, which fossilize only under special conditions (Martill, 1988). However,

other soft organs have been described in the Cretaceous of Araripe, Brazil (Martill, 1988;

1990; Pradel et al., 2009; Brito et al., 2010) and even in Paleozoic fishes (380 million-years old)

from the Gogo Formation in Australia (Trinajstic et al., 2007; 2013; Long et al., 2008) and Antarc-

tica (Young et al., 2010), which suggests that the difficulty lies not with cardiac preservation, but

with the lack of a systematic search.

Results
In the course of a wider search for fossil hearts, we fortuitously found evidence for a long and grad-

ual evolutionary reduction of the conus arteriosus and of its multiple fibrous valve rows in teleosts.

The relevant fossils are from the extinct pachyrhizodontid fish Rhacolepis buccalis (Agassiz, 1841),

known from fossils of remarkable three-dimensional (3D) preservation (Maisey, 1994). The fossils

were collected from the Romualdo Member of the Santana Formation, a Cretaceous Konservat

Lagerstätte in the Araripe Basin in the Northeast of Brazil. A pollen and spore-based biostratigraphi-

cal analysis indicates a temporal range from 119 to 113 Ma for the strata in which the fossils are

found (de Moraes Rios-Netto et al., 2012).

Rhacolepis buccalis is one of the most abundant fishes in the Santana Formation (Maisey, 1991)

and belongs to the extinct Mesozoic clade Pachyrhizodontoidei (Arratia, 2008; 2010). The relation-

ships of Pachyrhizodontoidei among teleosts have been disputed (Taverne, 1974; Taverne, 1976;

Forey, 1977). There is, however, mounting evidence that some features unite Pachyrhizodontoidei

with Elopomorpha (Maisey, 1991) and, recently, Pachyrhizodontoidei, among Crossognathiformes,

were placed as a group closely related to Elopomorpha in a basal position among all living teleosts

(Arratia, 2008; 2010). Thus, because of its basal phylogenetic position, R. buccalis is well suited for

studies on the evolution of morphological characters in teleosts.

Here, we report complete fossil hearts from two R. buccalis specimens (Figure 1). The fossils

were scanned with propagation phase contrast synchrotron radiation microtomography (PPC-SR-m

CT) at 6 mm resolution The remains of the R. buccalis heart are compressed along the latero-medial

axis and were found in an orthotopic position, that is, posterior to gills and between the bones of

the pectoral girdle (Figure 1a–b, Video 1). Their cardiac affinity is inferred on the basis of an S-

shaped configuration, four chambers (conus arteriosus, ventricle, atrium and sinus venosus), typical

ventricular (thick, arrowheads) and atrial (thin, arrows) muscular trabeculae (Figure 1c–f; Video 2), as

well as paired Cuvier ducts that join the sinus venosus in the posterior-most region of the heart (not

shown).

The outflow tract in R. buccalis displays a well-defined conus arteriosus encased by pericardium.

Our observations indicate that the R. buccalis conus arteriosus is formed by a thick muscular wall,

displays the morphology of a cylinder, which eventually tapers off before joining the aorta at its cra-

nial end and is endowed with multiple valve rows (Figure 1c–d, Video 2, Figure 2). In the region

immediately apposed to the heart, the pericardial sac assumes the shape of a pyramid wedged

between posterior bilateral gill regions (Video 2). In one of the specimens (CNPEM 17P), the peri-

cardial layer is easily identified near the conal myocardial wall (Figure 2p), while in the other speci-

men (CNPEM 01P), the limits between the conus arteriosus muscular wall and the pericardium are

less marked (Figure 2q). In summary, R. buccalis heart is unique among teleosts in that it displays a

large, dominant, conus arteriosus, rather than a predominant bulbus arteriosus in its outflow tract.

Inside the fossilized conus arteriosus it is possible to discern multiple, nearly parallel layers (Fig-

ure 2), which, upon 3D reconstruction, appear disposed as helicoid rings along the cranio-caudal

axis of the chamber (Figures 2b,e,h,k,n, Video 3). These structures are interpreted as the fossilized

remnants of the fibrous component of individual conal valves, presumably valve leaflets. For
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comparison, we depict the fibrous components (valve leaflets) of the two conal valves of Megalops

atlanticus (Figure 3), a living basal teleost, related to R. buccalis.

Sagittal and coronal tomographic sections and 3D reconstructions in the two fossil specimens are

consistent with the presence of at least five valve rows per conus arteriosus (Figures 2c,f,l,o,p,q).

Figure 1. Phase contrast synchrotron micro tomography of teleost fossil hearts. (a,b) 3D reconstructions of

specimen CNPEM 27P obtained from PPC-SR-mCT. (a), Left lateral view. (b), Ventral view. (c,d), (e,f) Sagittal

sections of specimens CNPEM 01P and CNPEM 17P, respectively. Blue masks in (d) and (f) highlight fossil cardiac

chambers and pericardium in the specimens CNPEM 01P and CNPEM 17P, respectively. Note that thin trabeculae

are associated to the atrium (arrows) and that thick trabeculae are typical of the ventricle (arrowheads)

Abbreviations: A, atrium; C.A., conus arteriosus; P, pericardium; S.V., sinus venosus; V, ventricle.

DOI: 10.7554/eLife.14698.003
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Because of post-mortem changes, of the imperfect alignment of the conus arteriosus to the body

axes, and of the semi-lunar character of conal valves (Figure 2), the transverse sections shown in Fig-

ure 2 actually represent shallow oblique sections that allow the depiction of more than one valve

row per transverse plane (Figure 2b,e,h,k,n), although it is difficult to describe with precision the

exact number of valves in each valve row due to the incomplete state of preservation.

Discussion
One important issue in the study of evolution is the idea of direction, that is, whether natural selec-

tion intrinsically favors the emergence of more complex forms or not (McShea, 1996). However, an

unequivocal association of evolution with complexity is not a requirement of evolutionary theory

(Darwin and Wallace, 1858). Moreover, such a view is at odds with biological evidence of frequent

secondary simplifications in the evolution of microorganisms, parasites and in miniaturized/cave/fos-

sorial fishes (Lwoff, 1943; Brusca and Brusca, 2003; Britz et al., 2014). Indeed, cases of morpho-

logical simplification reported in the literature most likely represent only a fraction of the examples

that falsify the notion that evolution must lead to increased complexity. Many other examples of sim-

plification are found in the evolution of animal circulatory systems (Xavier-Neto et al., 2010;

Brusca and Brusca, 2003). Was this the result of traditional phyletic gradualism, or of a saltation

event in the wake of large-scale gene duplication (Amores et al., 1998)?

The five rows of conal valves of R. buccalis contrast to the nine valvar rows, each containing three

to six individual valves in the basal actinopterygian Polypterus (Durán et al., 2014).

Rhacolepis buccalis valves also stand out when compared to the very limited number of conal valves

in living teleosts: two valve rows in Elopomorpha (excepting Elops, with one) and a single valve row

at the bulbo-ventricular transition in remaining teleosts. Taken together, these two characters, valvar

content and overall composition of the R. buccalis heart (i.e. chamber vs. elastic segment), suggest

that the outflow tract of this extinct fish represents an intermediate morphology between basal and

higher actinopterygians, frozen in time by fossilization as an evolutionary picture taken at the

Aptian/Albian boundary, 119–113 Ma (Rios-Netto et al., 2012) (Figures 2 and 3).

Valvar reduction in Actinopterygii was neither seamless, nor restricted to the teleost clade. In

fact, acipenseriforms and amiiforms display independent evolutionary tendencies for conus arterio-

sus simplification and valve reduction when compared to Polypterus. Moreover, among chondros-

teans, only acipenseriforms display a clear phenotype of valve reduction, while within holosteans

only amiiforms show a reduced number of valves. This suggests that valve reduction happened at

least three times independently in actinopterygians (Figure 3).

The five fossil valve rows we describe in R. buccalis indicate that the process of outflow tract sim-

plification involved at least three major transitions at the base of the teleost radiation (around 284

Ma (Betancur et al., 2013; Broughton et al., 2013)): one from nine valve rows to five valve rows

(e.g. from Polypterus to R. buccalis); another from five to two valve rows (e.g. from R. buccalis to liv-

ing elopomorphs); a third to the single outflow valve row retained in all other teleosts (Figure 3b).

It is important to recognize that events other than simplification are also involved in the evolution

of the outflow tract in vertebrates. For instance, there is evidence for increase in the number of

Video 1. 3D reconstruction of Rhacolepis buccalis

CNPEM 27P PPC-SR-mCT. Animated rotation of the

whole specimen zooming at heart position.

DOI: 10.7554/eLife.14698.004

Video 2. Rhacolepis buccalis PPC-SR-mCT. Details of

tomography at the heart region and 3D reconstruction

of the conal valves.

DOI: 10.7554/eLife.14698.005
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Figure 2. The fossil conus arteriosus of Rhacolepis buccalis. (a-c) Coronal, transversal and sagittal sections of the

conus arteriosus of specimen CNPEM 17P taken by Phase contrast synchrotron microtomography (PPC-SR-mCT),

respectively. Arrowheads in (c) indicate five conal valve rows in sagittal perspective. (d-f), Drawings of sections in

(a-c) highlight conal valve rows (gray). (g-i) Didactic scheme to indicate the orientation of individual valve rows

along the three orthogonal body planes (a-c) and (j-l), (j-l) Coronal, transversal and sagittal sections of the conus

arteriosus of specimen CNPEM 01P taken by PPC-SR-mCT. Arrowheads in (l) indicate five individual conal valves in

sagittal perspective. (m-o) Drawings of sections in (j-l) represent conal valves (gray). (p-q), 3D reconstruction and

segmentation of conal valves from specimens CNPEM 01P and 17P, respectively. Note that the pericardium (pink)

outlines the conus arteriosus (p). Each individual conal valve is represented by a specific spectral color.

DOI: 10.7554/eLife.14698.006
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valves occurring independently in basal Actino-

pterygii clades, explicitly in Polypteriformes and

Lepisosteiformes, which is not illuminated by our

present findings.

Currently, it is not possible to ascertain

genetic correlates for the valve reduction event

in R. buccalis. However, this does not prevent

informed speculation that may set parameters

for investigation in extant species with longer, or

shorter, divergence times from the exuberantly

valved Polypterus. In this sense, it is useful to

observe that valve reductions in acipenseriforms

and amiiforms are uncoupled from the teleost

extra round of large-scale genome duplication

that may, or may not, have affected R. buccalis. This suggests the possibility that slow, smaller scale,

mutational events produced incremental phenotypic changes, which may have been gradually

selected for outflow tract simplification in teleosts (Shapiro et al., 2004).

What developmental mechanisms could underlie the transition from conal to bulbal dominance

and from valve-rich to single-valved outflow tracts? Although we deal here with outflow composition

and number of valve rows as independent characters, it is possible that these traits are not

completely independent, and that the relevant parameter is simply the relative extent of outflow

tract occupied by the conus arteriosus and its valves, or by the bulbus arteriosus and its valveless,

elastic, character (Munoz-Chapuli et al., 1997). Outflow tract variability among actinopterygians was

modeled according to Turing’s reaction-diffusion paradigm (Munoz-Chapuli et al., 1997). The major

conclusion of this exercise was that the various rows of valves distributed across the cranio-caudal

extent of the conus arteriosus and the interspersed valveless spaces can be described as an ensem-

ble of multiple positive and negative domains of endothelial to mesenchymal transformation

Video 3. Rhacolepis buccalis PPC-SR-mCT. Sections of

conal valve.

DOI: 10.7554/eLife.14698.007

Figure 3. The heart of the extant elopiform Megalops atlanticus with a focus on its outflow tract. (a) Dissected heart of M. atlanticus. (b) The M.

atlanticus heart was cut open along the sagittal plane to expose right and left components of the two conus arteriosus valves. (c) Magnification of the

conus arteriosus in (b) showing valve leaflets from the two valve rows (white arrowheads) and the endocardial surface overlying conus arteriosus

muscles (black arrows). (d) Scheme representing the right valve leaflets from the conus arteriosus of M. atlanticus as displayed in (c). (e) 3D

reconstruction and segmentation of conal valves (blue) superimposed on a M. atlanticus Magnetic Resonance Imaging (MRI). (f) Detail of (e). (g) MRI of

the M. atlanticus outflow tract, highlighting two conal valves (arrowheads). Abbreviations: A, atrium; AO., aorta; B, bulbus arteriosus; C.A.; conus

arteriosus; L, left side; R, right side; S.V., sinus venosus; V, ventricle.

DOI: 10.7554/eLife.14698.008
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Figure 4. The Rhacolepis buccalis conus arteriosus is morphologically intermediate in actinopterygian cardiac outflow tract evolution. (a) Hypothetical

transition from a character state composed by an array of multiple valve rows in the conus arteriosus of basal actinopterygians, such as Polypteriformes

(top), to a derived state characterized by the dominance of the valveless bulbus arteriosus, in living teleosts (here represented by a generalized

elopomorph at the bottom), through an intermediate state represented in the conus arteriosus of fossilized R. buccalis hearts (middle). Anterior to left.

(b) Cladogram depicting phylogenetic relationships among early and derived gnathostomes and their corresponding morphologies of the cardiac

outflow region. Drawings represent either the inner sides of right (R) and left (L) counterparts, or only the inner right side of the cardiac outflow tract.

Drawings were modified from classic illustrations (Parsons, 1929; Danforth, 1912; Senior, 1907) (not to scale). Blue and pink coloring highlight,

respectively, bulbus and conus arteriosus (and respective valves) in extant species. Valvar arrangement in Rhacolepis is suggested by data in Figure 2.

A parsimony ancestral character state reconstruction was made for the number of conal valves, following the color code in terminals. General

relationships of Teleostei were based on Arratia, 2010. Genera illustrating the conal condition in each Actionopterygian branches are: Squalus for

Chondrichthyes; Neoceratodus for Sarcopterygii; Polypterus for Polypteriformes; Lepisosteus for Lepisosteiformes; Amia for Amiiformes; Pterothrissus

for Albuliformes; Gadus for Clupeocephala. Abbreviations: B, bulbus; C.A., conus arteriosus; L, left side; P, pericardium; R, right side; VE, ventricle.

DOI: 10.7554/eLife.14698.009
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(Runyan and Markwald, 1983) set up by the interaction between diffusible molecules playing activa-

tor and inhibitor roles (Munoz-Chapuli et al., 1997).

The data now available suggest a case of phyletic gradualism, rather than an abrupt saltation-like

event for actinopterygian outflow tract simplification. Three lines of evidence support this specula-

tion: evidence for three independent (i.e. convergent) events of valve reduction in Actinopterygii (in

acipenseriforms, amiiforms and teleosts); the three valvar simplification steps in teleosts (multiple to

five, five to two, and two to one; Figure 4) and the inferred simplicity of developmental mechanisms

capable of producing these phenotypes.

The discovery of a fossil heart in R. buccalis demonstrates that systematic, non-destructive

approaches can be employed to study cardiovascular evolution and suggests that these sensitive

techniques can be utilized not only in the context of species associated with abundant fossils, but

also with rare fossils of animals at key phylogenetic positions. Regardless of these specific questions,

we hope our results will open exciting new possibilities for research in cardiovascular paleontology

and evolution.

Material and methods

Examined material
The Rhacolepis buccalis fossils used in this study were collected from the Romualdo Member of the

Santana Formation, in the Cretaceous of Araripe Basin in the Northeast of Brazil. They are deposited

in the Exceptional Preservation Collection at the Brazilian Biosciences National Laboratory

(LNBio, Campinas, Brazil) and Brazilian Center for Research in Energy and Materials (CNPEM) under

the following accession numbers: CNPEM 01P; CNPEM 17P; CNPEM 27P.

Propagation phase contrast synchrotron radiation microtomography
(PPC-SR-mCT)
Carbonatic nodules were scanned at the ID17 and ID19 beamlines of the European Synchrotron

Radiation Facility (ESRF, Grenoble, France). For all samples, we set a propagation phase contrast

microtomography protocol with a sample/detector distance of about 10 m. On ID17, we had a

monochromatic beam (double-bended Laue crystals) of 150 keV. On ID19, we used a filtered pink

beam (Wiggler W150 with a gap of 28 mm, filters: Al, 2.8 mm; Cu, 8 mm; W, 1 mm) with a total inte-

grated energy of 210 keV. Two optic systems were utilized depending on the size of the nodules: a

0.5x magnification system with a FreLoN-2K camera resulting in a recorded isotropic pixel size of

about 28 mm and a 0.3x magnification system with a FreLoN-2K camera resulting in a recorded iso-

tropic pixel size of about 47 mm. The tomographies were computed based on 4998 projections over

360 degrees (pixel in horizontal x vertical: 1740x300 on ID19; 1800x130 on ID17). The exposure time

per projection was 0.2 s on ID17 and 0.07 s on ID19. As the vertical field of view could not cover the

full height of a nodule, multiple scans were necessary for each specimen, with a minimum overlap of

30% between each scan to correct the vertical profile of the X-ray beam. The reconstructed volumes

were stitched together to visualize whole nodules and by optimizing the overall contrast (i.e. stretch-

ing the range of grey values from the 32 bit raw data into a 16 bit full range of values, avoiding too

high levels of saturation).

Segmentation
All three dimensional (3D) images of the reconstructed morphology of R. buccalis fossils were pre-

pared with the AMIRA software, using TIFF images reconstructed from data obtained by propaga-

tion phase contrast synchrotron radiation microtomography scans. 3D models were built using the

isosurface and segmentation features of AMIRA.

During segmentation of R. buccalis, we determined that its conal valves rows are continuous and

follow a well-defined helicoid (clockwise) trajectory. The identities of each individual valves were

assigned whenever the segmented coils reached the same relative position in the spiral (i.e. con-

cluded a pitch).
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