7 research outputs found

    Genetic Admixture and Flavor Preferences: Androstenone Sensitivity in Malagasy Populations

    Get PDF
    The genetic basis of androstenone anosmia has been well-studied due to androstenone’s putative role as a human sex pheromone and its presence in pork meat. Polymorphisms have been identified on the olfactory receptor gene OR7D4, which significantly affect perception of androstenone pleasantness and intensity in several western populations. This study aims to investigate androstenone sensitivity and the influence of OR7D4 polymorphisms in non-western populations. Androstenone perception was tested in 132 individuals from Madagascar using a double 3-Alternative Choice test with two concentrations of androstenone (0.17 μg/ml and 1.7 μg/ml). We found that Malagasy populations described this molecule in a similar way to European populations, and 21% of the sample was not able to smell androstenone. In contrast to previous studies, there was no significant evidence of the influence of rs61729907: C\u3eT (R88W) and rs5020278: C\u3eT polymorphisms (T133M) on androstenone sensitivity in Malagasy populations. We found, however, a significant effect of the polymorphism rs61732668 (P79L), and a significant difference in androstenone perception between populations in different locations across Madagascar. This study indicates the existence of population specific factors to androstenone sensitivity, suggesting that population history has a role in shaping an individual’s smell and flavor preferences, and food preferences in general

    Isotopic biographies reveal horse rearing and trading networks in medieval London

    Get PDF
    This paper reports a high-resolution isotopic study of medieval horse mobility, revealing their origins and in-life mobility both regionally and internationally. The animals were found in an unusual horse cemetery site found within the City of Westminster, London, England. Enamel strontium, oxygen, and carbon isotope analysis of 15 individuals provides information about likely place of birth, diet, and mobility during the first approximately 5 years of life. Results show that at least seven horses originated outside of Britain in relatively cold climates, potentially in Scandinavia or the Western Alps. Ancient DNA sexing data indicate no consistent sex-specific mobility patterning, although three of the five females came from exceptionally highly radiogenic regions. Another female with low mobility is suggested to be a sedentary broodmare. Our results provide direct and unprecedented evidence for a variety of horse movement and trading practices in the Middle Ages and highlight the importance of international trade in securing high-quality horses for medieval London elites

    Assessing the predictive taxonomic power of the bony labyrinth 3D shape in horses, donkeys and their F1-hybrids

    No full text
    International audienceHorses and donkeys have had a far-reaching impact on human history, providing mechanical power for agriculture and transportation. Their F1-hybrids, especially mules, have also been of considerable importance due to their exceptional strength, endurance and resistance. The reconstruction of the respective role that horses, donkeys and mules played in past societies requires prior identification of their osseous elements in archaeological assemblages. This, however, remains difficult on the basis of morphological data alone and in the absence of complete skeletal elements. While DNA sequencing provides almost certain identification success, this approach requires dedicated infrastructure and sufficient ancient DNA (aDNA) preservation. Here, we assessed the performance of a cost-effective alternative approach based on geometric morphometric (GMM) analysis of the bony labyrinth, a structure carried within the petrosal bone. This extremely compact osseous structure provides good aDNA preservation and is frequently found in archaeological assemblages. To assess the GMM performance, we first used High-throughput DNA sequencing to identify 41 horses, 24 donkeys, 36 mules and one hinny from 11 archaeological sites from France and Turkey spanning different time periods. This provided a panel of 102 ancient equine remains for micro-computed tomography (microCT) and GMM assessment of the variation of the bony labyrinth shape, including the cochlea and the semicircular canals. Our new method shows good-to-excellent prediction rates (85.7%–95.2%) for the identification of species and hybrids when considering the cochlea and semicircular canals together. It provides a cheap, non-destructive alternative to aDNA for the taxonomic identification of past equine assemblages

    Assessing the predictive taxonomic power of the bony labyrinth 3D shape in horses, donkeys and their F1-hybrids

    No full text
    Horses and donkeys have had a far-reaching impact on human history, providing mechanical power for agriculture and transportation. Their F1-hybrids, especially mules, have also been of considerable importance due to their exceptional strength, endurance and resistance. The reconstruction of the respective role that horses, donkeys and mules played in past societies requires prior identification of their osseous elements in archaeological assemblages. This, however, remains difficult on the basis of morphological data alone and in the absence of complete skeletal elements. While DNA sequencing provides almost certain identification success, this approach requires dedicated infrastructure and sufficient ancient DNA (aDNA) preservation. Here, we assessed the performance of a cost-effective alternative approach based on geometric morphometric (GMM) analysis of the bony labyrinth, a structure carried within the petrosal bone. This extremely compact osseous structure provides good aDNA preservation and is frequently found in archaeological assemblages. To assess the GMM performance, we first used High-throughput DNA sequencing to identify 41 horses, 24 donkeys, 36 mules and one hinny from 11 archaeological sites from France and Turkey spanning different time periods. This provided a panel of 102 ancient equine remains for micro-computed tomography (microCT) and GMM assessment of the variation of the bony labyrinth shape, including the cochlea and the semicircular canals. Our new method shows good-to-excellent prediction rates (85.7%-95.2%) for the identification of species and hybrids when considering the cochlea and semicircular canals together. It provides a cheap, non-destructive alternative to aDNA for the taxonomic identification of past equine assemblages

    Evidence for early dispersal of domestic sheep into Central Asia

    No full text
    Archaeological and biomolecular investigations of ancient sheep remains from the site of Obishir V in southern Kyrgyzstan reveal that domestic livestock and Neolithic lifeways reached the heart of Central Asia by ca. 6,000 BCE, thousands of years earlier than previously recognized. The development and dispersal of agropastoralism transformed the cultural and ecological landscapes of the Old World, but little is known about when or how this process first impacted Central Asia. Here, we present archaeological and biomolecular evidence from Obishir V in southern Kyrgyzstan, establishing the presence of domesticated sheep by ca. 6,000 BCE. Zooarchaeological and collagen peptide mass fingerprinting show exploitation of Ovis and Capra, while cementum analysis of intact teeth implicates possible pastoral slaughter during the fall season. Most significantly, ancient DNA reveals these directly dated specimens as the domestic O. aries, within the genetic diversity of domesticated sheep lineages. Together, these results provide the earliest evidence for the use of livestock in the mountains of the Ferghana Valley, predating previous evidence by 3,000 years and suggesting that domestic animal economies reached the mountains of interior Central Asia far earlier than previously recognized.N

    34 Supplément | 2022

    No full text
    corecore