71 research outputs found

    Robust design of large-displacement compliant mechanisms

    Get PDF
    The aim of this article is to introduce a new topology optimisation formulation for optimal robust design of Micro Electro Mechanical Systems. Mesh independence in topology optimisation is most often ensured by using filtering techniques, which result in transition grey regions difficult to interpret in practical realisations. This problem has been alleviated recently by projection techniques, but these destroy the mesh independence introduced by the filters and result in single node connected hinges. Such features in the design are undesirable as they are not robust with respect to geometric manufacturing errors (such as under/over etching). They can be avoided by optimising for several design realisations which take into account the possible geometry errors. The design variations are modelled with the help of random variables. The proposed stochastic formulation for the design variations results in nearly black and white mechanism designs, robust with respect to uncertainties in the production process, i.e. without any hinges or small details which can create manufacturing difficulties

    A Review on Treatment-Related Brain Changes in Aphasia

    Get PDF
    Numerous studies have investigated brain changes associated with interventions targeting a range of language problems in patients with aphasia. We strive to integrate the results of these studies to examine (1) whether the focus of the intervention (i.e., phonology, semantics, orthography, syntax, or rhythmic-melodic) determines in which brain regions changes occur; and (2a) whether the most consistent changes occur within the language network or outside, and (2b) whether these are related to individual differences in language outcomes. The results of 32 studies with 204 unique patients were considered. Concerning (1), the location of treatment-related changes does not clearly depend on the type of language processing targeted. However, there is some support that rhythmic-melodic training has more impact on the right hemisphere than linguistic training. Concerning (2), we observed that language recovery is not only associated with changes in traditional language-related structures in the left hemisphere and homolog regions in the right hemisphere, but also with more medial and subcortical changes (e.g., precuneus and basal ganglia). Although it is difficult to draw strong conclusions, because there is a lack of systematic large-scale studies on this topic, this review highlights the need for an integrated approach to investigate how language interventions impact on the brain. Future studies need to focus on larger samples preserving subject-specific information (e.g., lesion effects) to cope with the inherent heterogeneity of stroke-induced aphasia. In addition, recovery-related changes in whole-brain connectivity patterns need more investigation to provide a comprehensive neural account of treatment-related brain plasticity and language recovery

    A 2.5D coupled FE-BE model for the prediction of railway induced vibrations

    Get PDF
    Ground vibrations induced by railway traffic at grade and in tunnels are often studied by means of two-and-half dimensional (2.5D) models that are based on a Fourier transform of the coordinate in the longitudinal direction of the track. In this paper, the need for 2.5D coupled finite element-boundary element models is demonstrated in two cases where the prediction of railway induced vibrations is considered. A recently proposed novel 2.5D methodology is used where the finite element method is combined with a boundary element method, based on a regularized boundary integral equation. In the formulation of the boundary integral equation, Green's functions of a layered elastic halfspace are used, so that no discretization of the free surface or the layer interfaces is required. In the first case, two alternative models for a ballasted track on an embankment are compared. In the first model, the ballast and the embankment are modelled as a continuum using 2.5D solid elements, whereas a simplified beam representation is adopted in the second model. The free field vibrations predicted by both models are compared to those measured during a passage of the TGVA at a site in Reugny (France). A very large difference is found for the free field response of both models that is due to the fact that the deformation of the cross section of the embankment is disregarded in the simplified representation. In the second case, the track and free field response due to a harmonic load in a tunnel embedded in a layered halfspace are considered. A simplified methodology based on the use of the full space Green's function in the tunnel–soil interaction problem is investigated. It is shown that the rigorous finite element-boundary element method is required when the distance between the tunnel and the free surface and the layer interfaces of the halfspace is small compared to the wavelength in the soil.Junta de Andalucía IAC08-II-3343Ministerio de Educación y Ciencia JC2008-0013

    The fictitious force method for efficient calculation of vibration from a tunnel embedded in a multi-layered half-space

    Get PDF
    This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel–soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel–soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green׳s functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element–boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.Engineering and Physical Sciences Research Council - grant # [EP/K006665/1]

    Dimensional accuracy of Electron Beam Melting (EBM) additive manufacture with regard to weight optimized truss structures

    Get PDF
    The Electron Beam (EBM) additive manufacturing process is well suited to fabricating complex structural designs in Ti–6Al–4V because of the design freedoms it offers combined with strong and consistent material properties. However it has been observed that complications may arise when manufacturing truss-like structures (such as those produced via structural topology optimization) in the form of undersized features on the finished part. The issue appears to affect truss members that are not aligned with the vertical build direction, with an apparent lack of material on the negative surfaces. This effect appears to worsen with a greater angle between the truss member and the build direction, even with the use of support structures. This investigation has characterized and measured the dimensional errors that result from this issue through 3D scanning techniques. Process modifications have then been made which result in significant improvements in dimensional accuracy. This investigation highlights the importance of heat management at features with negative surfaces to yield parts that are dimensionally accurate without introducing excessive internal melt defects in the form of voids and porosity

    The generation of hierarchic structures via robust 3D topology optimisation

    Get PDF
    Commonly used building structures often show a hierarchic layout of structural elements. It can be questioned whether such a layout originates from practical considerations, e.g. related to its construction, or that it is (relatively) optimal from a structural point of view. This paper investigates this question by using topology optimisation in an attempt to generate hierarchical structures. As an arbitrarily standard design case, the principle of a traditional timber floor that spans in one direction is used. The optimisation problem is first solved using classical sensitivity and density filtering. This leads indeed to solutions with a hierarchic layout, but they are practically unusable as the floor boarding is absent. A Heaviside projection is therefore considered next, but this does not solve the problem. Finally, a robust approach is followed, and this does result in a design similar to floor boarding supported by timber joists. The robust approach is then followed to study a floor with an opening, two floors that span in two directions, and an eight-level concrete building. It can be concluded that a hierarchic layout of structural elements likely originates from being optimal from a structural point of view. Also clear is that this conclusion cannot be obtained by means of standard topology optimisation based on sensitivity or density filtering (as often found in commercial finite element codes); robust 3D optimisation is required to obtain a usable, constructible (or in the future: 3D printable) structural design, with a crisp black-and-white density distribution
    • …
    corecore