2,301 research outputs found

    Thawing quintessence with a nearly flat potential

    Full text link
    The thawing quintessence model with a nearly flat potential provides a natural mechanism to produce an equation of state parameter, w, close to -1 today. We examine the behavior of such models for the case in which the potential satisfies the slow roll conditions: [(1/V)(dV/dphi)]^2 << 1 and (1/V)(d^2 V/dphi^2) << 1, and we derive the analog of the slow-roll approximation for the case in which both matter and a scalar field contribute to the density. We show that in this limit, all such models converge to a unique relation between 1+w, Omega_phi, and the initial value of (1/V)(dV/dphi). We derive this relation, and use it to determine the corresponding expression for w(a), which depends only on the present-day values for w and Omega_phi. For a variety of potentials, our limiting expression for w(a) is typically accurate to within delta w < 0.005 for w<-0.9. For redshift z < 1, w(a) is well-fit by the Chevallier-Polarski-Linder parametrization, in which w(a) is a linear function of a.Comment: 8 pages, 5 figures, discussion added, references updated, typos corrected, to appear in Phys. Rev.

    User's Guide for ERB 7 SEFDT. Volume 1: User's Guide. Volume 2: Quality Control Report, Year 1

    Get PDF
    The Nimbus-7 ERB SEFDT Data User's Guide is presented. The guide consists of four subsections which describe: (1) the scope of the data User's Guide; (2) the background on Nimbus-7 Spacecraft and the ERB experiment; (3) the SEFDT data product and processing scenario; and (4) other related products and documents

    Post-transcriptional gene regulation: From genome-wide studies to principles

    Get PDF
    Abstract.: Post-transcriptional regulation of gene expression plays important roles in diverse cellular processes such as development, metabolism and cancer progression. Whereas many classical studies explored the mechanistics and physiological impact on specific mRNA substrates, the recent development of genome-wide analysis tools enables the study of post-transcriptional gene regulation on a global scale. Importantly, these studies revealed distinct programs of RNA regulation, suggesting a complex and versatile post-transcriptional regulatory network. This network is controlled by specific RNA-binding proteins and/or non-coding RNAs, which bind to specific sequence or structural elements in the RNAs and thereby regulate subsets of mRNAs that partly encode functionally related proteins. It will be a future challenge to link the spectra of targets for RNA-binding proteins to post-transcriptional regulatory programs and to reveal its physiological implication

    Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    Get PDF
    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided

    On Random Bubble Lattices

    Full text link
    We study random bubble lattices which can be produced by processes such as first order phase transitions, and derive characteristics that are important for understanding the percolation of distinct varieties of bubbles. The results are relevant to the formation of topological defects as they show that infinite domain walls and strings will be produced during appropriate first order transitions, and that the most suitable regular lattice to study defect formation in three dimensions is a face centered cubic lattice. Another application of our work is to the distribution of voids in the large-scale structure of the universe. We argue that the present universe is more akin to a system undergoing a first-order phase transition than to one that is crystallizing, as is implicit in the Voronoi foam description. Based on the picture of a bubbly universe, we predict a mean coordination number for the voids of 13.4. The mean coordination number may also be used as a tool to distinguish between different scenarios for structure formation.Comment: several modifications including new abstract, comparison with froth models, asymptotics of coordination number distribution, further discussion of biased defects, and relevance to large-scale structur

    Cosmic String Formation from Correlated Fields

    Get PDF
    We simulate the formation of cosmic strings at the zeros of a complex Gaussian field with a power spectrum P(k)knP(k) \propto k^n, specifically addressing the issue of the fraction of length in infinite strings. We make two improvements over previous simulations: we include a non-zero random background field in our box to simulate the effect of long-wavelength modes, and we examine the effects of smoothing the field on small scales. The inclusion of the background field significantly reduces the fraction of length in infinite strings for n<2n < -2. Our results are consistent with the possibility that infinite strings disappear at some n=ncn = n_c in the range 3nc<2.2-3 \le n_c < -2.2, although we cannot rule out nc=3n_c = -3, in which case infinite strings would disappear only at the point where the mean string density goes to zero. We present an analytic argument which suggests the latter case. Smoothing on small scales eliminates closed loops on the order of the lattice cell size and leads to a ``lattice-free" estimate of the infinite string fraction. As expected, this fraction depends on the type of window function used for smoothing.Comment: 24 pages, latex, 10 figures, submitted to Phys Rev

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    An Electron Sensor for the Pulsating Aurora 2 (Pulsaur 2) Mission

    Get PDF
    The purpose of this grant was to provide a low-energy electron detector to be flown on the PULSAUR 2 rocket payload for investigation of the pulsating aurora. In the course of this grant, the instrument, a tophat analyzer, was built and calibrated by the combined efforts of Southwest Research Institute, Mullard Space Sciences Laboratory, Rutherford Appleton Laboratory, and Goddard Space Flight Center, and successfully flown into an active, early morning, pulsating aurora over Andoya, Norway, on February 9, 1994. This report provides a description of the instrument and its calibration and gives examples of data obtained on the flight

    Metastable GeV-scale particles as a solution to the cosmological lithium problem

    Full text link
    The persistent discrepancy between observations of 7Li with putative primordial origin and its abundance prediction in Big Bang Nucleosynthesis (BBN) has become a challenge for the standard cosmological and astrophysical picture. We point out that the decay of GeV-scale metastable particles X may significantly reduce the BBN value down to a level at which it is reconciled with observations. The most efficient reduction occurs when the decay happens to charged pions and kaons, followed by their charge exchange reactions with protons. Similarly, if X decays to muons, secondary electron antineutrinos produce a similar effect. We consider the viability of these mechanisms in different classes of new GeV-scale sectors, and find that several minimal extensions of the Standard Model with metastable vector and/or scalar particles are capable of solving the cosmological lithium problem. Such light states can be a key to the explanation of recent cosmic ray anomalies and can be searched for in a variety of high-intensity medium-energy experiments.Comment: 50 pages, 13 figures; references added, typo correcte

    Analytical models for Cross-correlation signal in Time-Distance Helioseismology

    Get PDF
    In time-distance helioseismology, the time signals (Doppler shifts) at two points on the solar surface, separated by a fixed angular distance are cross-correlated, and this leads to a wave packet signal. Accurately measuring the travel times of these wave packets is crucial for inferring the sub-surface properties in the Sun. The observed signal is quite noisy, and to improve the signal-to-noise ratio and make the cross-correlation more robust, the temporal oscillation signal is phase-speed filtered at the two points in order to select waves that travel a fixed horizontal distance. Hence a new formula to estimate the travel times is derived, in the presence of a phase speed filter, and it includes both the radial and horizontal component of the oscillation displacement signal. It generalizes the previously used Gabor wavelet that was derived without a phase speed filter and included only the radial component of the displacement. This is important since it will be consistent with the observed cross-correlation that is computed using a phase speed filter, and also it accounts for both the components of the displacement. The new formula depends on the location of the two points on the solar surface that are being cross correlated and accounts for the travel time shifts at different locations on the solar surface.Comment: 27 pages, 8 figures, ApJ in pres
    corecore