558 research outputs found

    Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)

    Get PDF
    Ultrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD(+)-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydrogenase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12 °C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows.This research was funded by the Engineering and Physical Sciences Research Council (studentship to RH and an Impact Acceleration Account Partnership Development Award), the Biological and Biotechnological Research Council (BBSRC) and Johnson Matthey. SE and MF were supported by postdoctoral Marie-Curie fellowships

    Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)

    Get PDF
    This is the final version. Available from National Academy of Sciences via the DOI in this recordUltrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD+-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydro-genase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12°C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows.Biotechnology and Biological Sciences Research CouncilEuropean Research CouncilEngineering and Physical Sciences Research CouncilEuropean Commissio

    Experimental studies on elastic X-ray scattering

    Get PDF

    New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Get PDF
    International audienceDuring the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.</p

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    Pfeiffer syndrome

    Get PDF
    Pfeiffer syndrome is a rare autosomal dominantly inherited disorder that associates craniosynostosis, broad and deviated thumbs and big toes, and partial syndactyly on hands and feet. Hydrocephaly may be found occasionally, along with severe ocular proptosis, ankylosed elbows, abnormal viscera, and slow development. Based on the severity of the phenotype, Pfeiffer syndrome is divided into three clinical subtypes. Type 1 "classic" Pfeiffer syndrome involves individuals with mild manifestations including brachycephaly, midface hypoplasia and finger and toe abnormalities; it is associated with normal intelligence and generally good outcome. Type 2 consists of cloverleaf skull, extreme proptosis, finger and toe abnormalities, elbow ankylosis or synostosis, developmental delay and neurological complications. Type 3 is similar to type 2 but without a cloverleaf skull. Clinical overlap between the three types may occur. Pfeiffer syndrome affects about 1 in 100,000 individuals. The disorder can be caused by mutations in the fibroblast growth factor receptor genes FGFR-1 or FGFR-2. Pfeiffer syndrome can be diagnosed prenatally by sonography showing craniosynostosis, hypertelorism with proptosis, and broad thumb, or molecularly if it concerns a recurrence and the causative mutation was found. Molecular genetic testing is important to confirm the diagnosis. Management includes multiple-staged surgery of craniosynostosis. Midfacial surgery is performed to reduce the exophthalmos and the midfacial hypoplasia

    Polarization transfer in Rayleigh scattering of hard x-rays

    Get PDF
    Wereport on the first elastic hard x-ray scattering experiment where the linear polarizationcharacteristics of both the incident and the scattered radiation were observed. Rayleigh scattering wasinvestigated in a relativistic regime by using a high-Z target material, namely gold, and a photon energyof 175keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at ascattering angle of q = 90we observed a strong depolarization for the scattered photonswith adegree of linear polarization of +0.27% 0.12%only. This finding agreeswith second-orderquantum electrodynamics calculations of Rayleigh scattering, when taking into account a smallpolarization impurity of the incident photon beam which was determined to be close to 98%. Thelatter value was obtained independently from the elastic scattering by analyzing photons that wereCompton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-arttheory, Rayleigh scattering could provide a very accurate method to diagnose polarization impuritiesin a broad region of hard x-ray energies

    Far-infrared study of the Jahn-Teller distorted C60 monoanion in C60 tetraphenylphosphoniumiodide

    Get PDF
    We report high-resolution far-infrared transmission measurements on C(60)-tetraphenylphosphoniumiodide as a function of temperature. In the spectral region investigated (20-650 cm(-1)), we assign intramolecular modes of the C(60) monoanion and identify low-frequency combination modes. The well-known F(1u)(1) and F(1u)(2) modes are split into doublers at room temperature, indicating a D(5d) or D(3d) distorted ball. This result is consistent with a dynamic Jahn-Teller effect in the strong-coupling limit or with a static distortion stabilized by low-symmetry perturbations. The appearance of silent odd modes is in keeping with symmetry reduction of the hall, while activation of even modes is attributed to interband electron-phonon coupling and orientational disorder in the fulleride salt. Temperature dependences reveal a weak transition in the region 125-150 K in both C(60)(-) and counterion modes, indicating a bulk, rather than solely molecular, effect. Anomalous softening (with decreasing temperature) in several modes may correlate with the radial character of those vibrations. [S0163-1829(98)03245-7]
    • …
    corecore