534 research outputs found

    Asymptotically correct shell model for nuclear fission

    Get PDF
    A two-center shell model with oscillator potentials, l→·s→ forces, and l→2 terms is developed. The shell structures of the original spherical nucleus and those of the final fragments are reproduced. For small separation of the two centers the level structure resembles the Nilsson scheme. This two-center shell model might be of importance in problems of nuclear fission

    Feeding specialists on fatty acid-rich prey have higher gonad weights: Pay-off in Baltic perch?

    Get PDF
    Individual specialization is a common phenomenon throughout the animal kingdom. Many studies have identified intraspecific competition as one of the main drivers for individual feeding specialization. These studies have mainly considered the quantity of resources, commonly overlooking qualitative aspects of the diet. For example, highly unsaturated fatty acids of the omega-3 class (omega-3 HUFAs) are related to optimal health and growth in consumers. However, little is known on direct fitness consequences for consumers of natural populations that specialize on high-quality resources, such as those rich in omega-3 HUFAs. Despite being such an important qualitative aspect of the diet, it is still unknown whether natural populations show among-individual variation in their choice on prey items that are either rich or poor in HUFAs, and how it affects individual performances. In this study, we investigated whether there is individual feeding specialization and whether it is related to fitness benefits, in a population of perch (Perca fluviatilis) in the Baltic Sea. The contribution of pelagic planktivorous fish to the diet varied from 17% to 61% among perch individuals, as depicted by stable isotope mixing models. This variation in diet was also qualitative, as the omega-3 HUFA content differed among prey types. Specialization on the high-quality resource pelagic planktivorous fish was associated with the proportions of omega-3 HUFA in the individuals' muscles and individuals among those with the highest proportions of omega-3 HUFAs had the greatest relative gonad weight (gonadosomatic index, GSI), a proxy for reproductive investment. Thus, our results highlight the function of food quality for individual specialization and its potential to have direct fitness benefits, playing a major role in shaping ecological interactions

    Fatty acid accumulation in feeding types of a natural freshwater fish population

    Get PDF
    Fatty acids are widely used to study trophic interactions in food web assemblages. Generally, it is assumed that there is a very small modification of fatty acids from one trophic step to another, making them suitable as trophic biomarkers. However, recent literature provides evidence that many fishes possess genes encoding enzymes with a role in bioconversion, thus the capability for bioconversion might be more widespread than previously assumed. Nonetheless, empirical evidence for biosynthesis occurring in natural populations remains scarce. In this study, we investigated different feeding types of perch (Perca fluviatilis) that are specialized on specific resources with different levels of highly unsaturated fatty acids (HUFAs), and analyzed the change between HUFA proportions in perch muscle tissue compared to their resources. Perch showed matching levels to their resources for EPA, but ARA and especially DHA were accumulated. Compound-specific stable isotope analyses helped us to identify the origin of HUFA carbon. Our results suggest that perch obtain a substantial amount of DHA via bioconversion when feeding on DHA-poor benthic resources. Thus, our data indicate the capability of bioconversion of HUFAs in a natural freshwater fish population

    Effects of mining activities on fish communities and food web dynamics in a lowland river

    Get PDF
    Fish communities of streams and rivers might be substantially subsidized by terrestrial insects that fall into the water. Although such animal‐mediated fluxes are increasingly recognized, little is known about how anthropogenic perturbations may influence the strength of such exchanges. Intense land use, such as lignite mining, may impact a river ecosystem due to the flocculation of iron (III) oxides, thus altering food web dynamics. We compared sections of the Spree River in North‐East Germany that were greatly influenced by iron oxides with sections located downstream of a dam where passive remediation technologies are applied. Compared to locations downstream of the dam, the abundance of benthic macroinvertebrates at locations of high iron concentrations upstream of the dam was significantly reduced. Similarly, catch per unit effort of all fish was significantly higher in locations downstream of the dam compared to locations upstream of the dam, and the condition of juvenile and adult piscivorous pike Esox lucius was significantly lower in sections of high iron concentrations. Using an estimate of short‐term (i.e., metabarcoding of the gut content) as well as longer‐term (i.e., hydrogen stable isotopes) resource use, we could demonstrate that the three most abundant fish species, perch Perca fluviatilis, roach Rutilus rutilus, and bleak Alburnus alburnus, received higher contributions of terrestrial insects to their diet at locations of high iron concentration. In summary, lotic food webs upstream and downstream of the dam greatly differed in the overall structure with respect to the energy available for the highest tropic levels and the contribution of terrestrial insects to the diet of omnivorous fish. Therefore, human‐induced environmental perturbations, such as river damming and mining activities, represent strong pressures that can alter the flow of energy between aquatic and terrestrial systems, indicating a broad impact on the landscape level.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Fischereiabgabe Brandenburg, Ministerium für Landwirtschaft, Umwelt und Klimaschutz des Landes BrandenburgPeer Reviewe

    The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species

    Get PDF
    Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviors that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interacts with the larger suite of traits to ultimately determine individual fitness. We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden. Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations, was lower in pelagic perch. This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats

    In vitro evaluation of poly (L-lactide-co-glycolide) membrane

    Get PDF
    The aim of this study was to prepare and evaluate the properties of a new membrane dedicated for the treatment of bone defects in periodontology according to guided tissue regeneration (GTR) technique. The first part of this study was to prepare the membrane from resorbable poly(L-lactide-co-glycolide) (PLGA) and verify its microstructure. Biological evaluation was lead using the cells interesting from the point of view of GTR, e.g. human fibroblasts and mesenchymal stem cells (hMSC). It was found that the obtained membrane has asymmetric microstructure and defined pore size. Cell culture experiments show that the membrane is biocompatible with fibroblasts and hMSC. Both types of cell proliferated well on the membrane. HMSC cultured on the membrane exhibited better osteogenic differentiation and higher mineralization as compared to control tissue culture polystyrene

    A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications

    Get PDF
    We present a measurement cell that allows simultaneous measurement of second harmonic generation (SHG) and streaming potential (SP) at mineral-water interfaces with flat specimen that are suitable for non-linear optical (NLO) studies. The set-up directly yields SHG data for the interface of interest and can also be used to obtain information concerning the influence of flow on NLO signals from that interface. The streaming potential is at present measured against a reference substrate (PTFE). The properties of this inert reference can be independently determined for the same conditions. With the new cell, for the first time the SHG signal and the SP for flat surfaces have been simultaneously measured on the same surface. This can in turn be used to unambiguously relate the two observations for identical solution composition. The SHG test of the cell with a fluorite sample confirmed previously observed differences in NLO signal under flow vs. no flow conditions in sum frequency generation (SFG) investigations. As a second test surface, an inert ("hydrophobic") OTS covered sapphire-c electrolyte interface was studied to verify the zeta-potential measurements with the new cell. For this system we obtained combined zeta-potential/SHG data in the vicinity of the point of zero charge, which were found to be proportional to each other as expected. Furthermore, on the accessible time scales of the SHG measurements no effects of flow, flow velocity and stopped flow occurred on the interfacial water structure. This insensitivity to flow for the inert surface was corroborated by concomitant molecular dynamics simulations. Finally, the set-up was used for simultaneous measurements of the two properties as a function of pH in automated titrations with an oxidic surface. Different polarization combinations obtained in two separate titrations, yielded clearly different SHG data, while under identical conditions zeta-potentials were exactly reproduced. The polarization combination that is characteristic for dipoles perpendicular to the surface scaled with the zeta-potentials over the pH-range studied, while the other did not. The work provides an advanced approach for investigating liquid/surface interactions which play a major role in our environment. The set-up can be upgraded for SFG studies, which will allow more detailed studies on the chemistry and the water structure at a given interface, but also the combined study of specific adsorption including kinetics in combination with electrokinetics. Such investigations are crucial for the basic understanding of many environmental processes from aquatic to atmospheric systems

    DNA-Directed Assembly of a Cell-Responsive Biohybrid Interface for Cargo Release

    Get PDF
    The development of a DNA-based cell-responsive biohybrid interface that can be used for spatially confined release of molecular cargo is reported. To this end, tailored DNA–protein conjugates are designed as gatekeepers that can be specifically cleaved by matrix metalloproteases (MMPs), which are secreted by many cancer cells. These gatekeepers can be installed by DNA hybridization on the surface of mesoporous silica nanoparticles (MSNs). The MSNs display another orthogonal DNA oligonucleotide that can be exploited for site-selective immobilization on solid glass surfaces to yield micropatterned substrates for cell adhesion. Using the human fibrosarcoma cell line HT1080 that secretes MMPs, it is demonstrated that the biohybrid surface is specifically modified by the cells to release both MSN-bound gatekeeper proteins and the encapsulated cargo peptide KLA. In view of the enormously high modularity of the system presented here, this approach promising for applications in drug delivery, tissue engineering, or other areas of nanobiotechnology is considered

    Deformed two center shell model

    Get PDF
    A highly specialized two-center shell model has been developed accounting for the splitting of a deformed parent nucleus into two ellipsoidaly deformed fragments. The potential is based on deformed oscillator wells in direct correspondance with the shape change of the nuclear system. For the first time a potential responsible for the necking part between the fragments is introduced on potential theory basis. As a direct consequence, spin-orbit {\bf ls} and {\bf l2^2} operators are calculated as shape dependent. Level scheme evolution along the fission path for pairs of ellipsoidaly deformed fragments is calculated. The Strutinsky method yields the shell corrections for different mass asymmetries from the superheavy nucleus 306^{306}122 and 252^{252}Cf all along the splitting process.Comment: 32 pages, 8 figure

    Modifications of Hyaluronan Influence the Interaction with Human Bone Morphogenetic Protein-4 (hBMP-4).

    Get PDF
    n this study, we have demonstrated that the modification of hyaluronan (hyaluronic acid; Hya) with sulfate groups led to different binding affinities for recombinant human bone morphogenetic protein-4 (rhBMP-4). The high-sulfated sHya2.8 (average degree of sulfation (D.S.) 2.8) exhibited the tightest interaction with rhBMP-4, followed by the low-sulfated sHya1.0, as determined with surface plasmon resonance (SPR), ELISA, and competition ELISA. Unmodified Hya, chondroitin-sulfate (CS), and heparan sulfate (HS) showed significantly less binding affinity. SPR data could be fitted to an A + B = AB Langmuir model and binding constants were evaluated ranging from 13 pM to 5.45 microM. The interaction characteristics of the differentially sulfated Hyas are promising for the incorporation of these modified polysaccharides in bioengineered coatings of biomaterials for medical applications
    corecore