111 research outputs found

    Probing the mechanical properties of graphene using a corrugated elastic substrate

    Full text link
    The exceptional mechanical properties of graphene have made it attractive for nano-mechanical devices and functional composite materials. Two key aspects of graphene's mechanical behavior are its elastic and adhesive properties. These are generally determined in separate experiments, and it is moreover typically difficult to extract parameters for adhesion. In addition, the mechanical interplay between graphene and other elastic materials has not been well studied. Here, we demonstrate a technique for studying both the elastic and adhesive properties of few-layer graphene (FLG) by placing it on deformable, micro-corrugated substrates. By measuring deformations of the composite graphene-substrate structures, and developing a related linear elasticity theory, we are able to extract information about graphene's bending rigidity, adhesion, critical stress for interlayer sliding, and sample-dependent tension. The results are relevant to graphene-based mechanical and electronic devices, and to the use of graphene in composite, flexible, and strain-engineered materials.Comment: 5 pages, 4 figure

    Electrostatic trapping of metastable NH molecules

    Get PDF
    We report on the Stark deceleration and electrostatic trapping of 14^{14}NH (a1Δa ^1\Delta) radicals. In the trap, the molecules are excited on the spin-forbidden A3Π←a1ΔA ^3\Pi \leftarrow a ^1\Delta transition and detected via their subsequent fluorescence to the X3Σ−X ^3\Sigma^- ground state. The 1/e trapping time is 1.4 ±\pm 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a1Δ,v=0,J=2a ^1\Delta, v=0,J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.Comment: replaced with final version, added journal referenc

    Observation of a Snap-Through Instability in Graphene

    Full text link
    We examine the competition between adhesive and bending energies for few-layered graphene samples placed on rigid, microscale-corrugated substrates. Using atomic force microscopy, we show that the graphene undergoes a sharp "snap-through" transition as a function of layer thickness, where the material transitions between conforming to the substrate and lying flat on top of the substrate. By utilizing the critical snap-through thickness in an elasticity model for the FLG's bending, we extract a value for graphene-surface adhesion energy that is larger than expected for van der Waals forces.Comment: 8 pages, 3 figure

    New Perspectives on Glacial Geomorphology in Earth's Deep Time Record

    Get PDF
    International audienceThe deep time (pre-Quaternary) glacial record is an important means to understand the growth, development, and recession of the global cryosphere on very long timescales (10 6-10 8 Myr). Sedimentological description and interpretation of outcrops has traditionally played an important role. Whilst such data remain vital, new insights are now possible thanks to freely accessible aerial and satellite imagery, the widespread availability and affordability of Uncrewed Aerial Vehicles, and accessibility to 3D rendering software. In this paper, we showcase examples of glaciated landscapes from the Cryogenian, Ediacaran, Late Ordovician and Late Carboniferous where this approach is revolutionizing our understanding of deep time glaciation. Although some problems cannot be overcome (erosion or dissolution of the evidence), robust interpretations in terms of the evolving subglacial environment can be made. Citing examples from Australia (Cryogenian), China (Ediacaran), North and South Africa (Late Ordovician, Late Carboniferous), and Namibia (Late Carboniferous), we illustrate how the power of glacial geomorphology can be harnessed to interpret Earth's ancient glacial record

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature

    Full text link
    Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ−^3\Sigma^-) + NH(3Σ−^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Bird’s-eye view of an Ediacaran subglacial landscape

    Get PDF
    Depositional evidence for glaciation (dropstones, diamictites) is common in Neoproterozoic strata, and often debated, but erosional evidence (e.g., unconformities cut directly by ice) is rare. Only two such unconformities are known to have been well preserved globally from the Ediacaran Period (in western Australia and central China). This paper provides the first full description of a spectacular subglacial landscape carved beneath ice masses in the Shimengou area of central China, with classical subglacial bed forms including general faceted forms, mĂŒschelbruche, cavetto, spindle forms, and striations that testify to an abundance of meltwater during subglacial erosion. These features were produced during the southward, somewhat sinuous, flow of a temperate to polythermal ice mass

    Study protocol for a non-inferiority trial of cytisine versus nicotine replacement therapy in people motivated to stop smoking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smokers need effective support to maximise the chances of successful quit attempts. Current smoking cessation medications, such as nicotine replacement therapy (NRT), bupropion, nortriptyline or varenicline, have been shown to be effective in clinical trials but are underused by smokers attempting to quit due to adverse effects, contraindications, low acceptability and/or high cost. Cytisine is a low-cost, plant-based alkaloid that has been sold as a smoking cessation aid in Eastern Europe for 50 years. A systematic review of trial evidence suggests that cytisine has a positive impact on both short- and long-term abstinence rates compared to placebo. However, the quality of the evidence is poor and insufficient for licensing purposes in many Western countries. A large, well-conducted placebo-controlled trial (n = 740) of cytisine for smoking cessation has recently been published and confirms the findings of earlier studies, with 12-month continuous abstinence rates of 8.4% in the cytisine group compared to 2.4% in the placebo group (Relative risk = 3.4, 95% confidence intervals 1.7-7.1). No research has yet been undertaken to determine the effectiveness of cytisine relative to that of NRT.</p> <p>Methods/design</p> <p>A single-blind, randomised controlled, non-inferiority trial has been designed to determine whether cytisine is at least as effective as NRT in assisting smokers to remain abstinent for at least one month. Participants (n = 1,310) will be recruited through the national telephone-based Quitline service in New Zealand and randomised to receive a standard 25-day course of cytisine tablets (Tabex<sup>Âź</sup>) or usual care (eight weeks of NRT patch and/or gum or lozenge). Participants in both study arms will also receive a behavioural support programme comprising an average of three follow-up telephone calls delivered over an eight-week period by Quitline. The primary outcome is continuous abstinence from smoking at one month, defined as not smoking more than five cigarettes since quit date. Outcome data will also be collected at one week, two months and six months post-quit date.</p> <p>Discussion</p> <p>Cytisine appears to be effective compared with placebo, and given its (current) relative low cost may be an acceptable smoking cessation treatment for smokers, particularly those in low- and middle-income countries. Cytisine's 'natural' product status may also increase its acceptability and use among certain groups of smokers, such as indigenous people, smokers in countries where the use of natural medicines is widespread (e.g. China, India), and in those people who do not want to use NRT or anti-depressants to help them quit smoking. However it is important to ascertain the effectiveness of cytisine compared with that of existing cessation treatments.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry (<a href="http://www.anzctr.org.au/ACTRN12610000590066.aspx">ACTRN12610000590066</a>)</p
    • 

    corecore