389 research outputs found

    <i>Melav2</i>, an <i>elav</i>-like gene, is essential for spermatid differentiation in the flatworm <i>Macrostomum lignano</i>

    Get PDF
    BackgroundFailure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms.ResultsIn a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage.ConclusionWe characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation

    Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence

    Get PDF
    Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G1, G2 or G3 of NarI sequence (5′-CCG1G2CG3CC-3′). Our 19F-NMR/ICD results showed that FAAF at G1 and G3 prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G2. We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G3 and -G1 duplexes incised more efficiently than the B-type G2 duplex (G3∼G1 > G2). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G2∼G1 > G3, a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts

    Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair

    Get PDF
    While methylcytosines serve as the fifth base encoding epigenetic information, they are also a dangerous endogenous mutagen due to their intrinsic instability. Methylcytosine undergoes spontaneous deamination, at a rate much higher than cytosine, to generate thymine. In mammals, two repair enzymes, thymine DNA glycosylase (TDG) and methyl-CpG binding domain 4 (MBD4), have evolved to counteract the mutagenic effect of methylcytosines. Both recognize G/T mismatches arising from methylcytosine deamination and initiate base-excision repair that corrects them to G/C pairs. However, the mechanism by which the methylation status of the repaired cytosines is restored has remained unknown. We show here that the DNA methyltransferase Dnmt3a interacts with TDG. Both the PWWP domain and the catalytic domain of Dnmt3a are able to mediate the interaction with TDG at its N-terminus. The interaction affects the enzymatic activity of both proteins: Dnmt3a positively regulates the glycosylase activity of TDG, while TDG inhibits the methylation activity of Dnmt3a in vitro. These data suggest a mechanistic link between DNA repair and remethylation at sites affected by methylcytosine deamination

    Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability

    Get PDF
    Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models

    Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43

    Get PDF
    Tbx3, a T-box transcription factor, regulates key steps in development of the heart and other organ systems. Here, we identify Sox4 as an interacting partner of Tbx3. Pull-down and nuclear retention assays verify this interaction and in situ hybridization reveals Tbx3 and Sox4 to co-localize extensively in the embryo including the atrioventricular and outflow tract cushion mesenchyme and a small area of interventricular myocardium. Tbx3, SOX4, and SOX2 ChIP data, identify a region in intron 1 of Gja1 bound by all tree proteins and subsequent ChIP experiments verify that this sequence is bound, in vivo, in the developing heart. In a luciferase reporter assay, this element displays a synergistic antagonistic response to co-transfection of Tbx3 and Sox4 and in vivo, in zebrafish, drives expression of a reporter in the heart, confirming its function as a cardiac enhancer. Mechanistically, we postulate that Sox4 is a mediator of Tbx3 transcriptional activity

    Host Sexual Dimorphism and Parasite Adaptation

    Get PDF
    Disease expression and prevalence often vary in the different sexes of the host. This is typically attributed to innate differences of the two sexes but specific adaptations by the parasite to one or other host sex may also contribute to these observations
    corecore