822 research outputs found

    The Multifragmentation Freeze--Out Volume in Heavy Ion Collisions

    Full text link
    The reduced velocity correlation function for fragments from the reaction Fe + Au at 100 A~MeV bombarding energy is investigated using the dynamical--statistical approach QMD+SMM and compared to experimental data to extract the Freeze--Out volume assuming simultaneous multifragmentation.Comment: 8 pages; 3 uuencoded figures available with figures command, LateX, UCRL-J-1157

    Chimpanzees Do Not Take Advantage of Very Low Cost Opportunities to Deliver Food to Unrelated Group Members

    Get PDF
    We conducted experiments on two populations of chimpanzees, Pan troglodytes, to determine whether they would take advantage of opportunities to provide food rewards to familiar group members at little cost to themselves. In both of the experiments described here, chimpanzees were able to deliver identical rewards to themselves and to other members of their social groups. We compared the chimpanzees\u27 behaviour when they were paired with another chimpanzee and when they were alone. If chimpanzees are motivated to provide benefits to others, they are expected to consistently deliver rewards to others and to distinguish between the partner-present and partner-absent conditions. Results from both experiments indicate that our subjects were largely indifferent to the benefits they could provide to others. They were less likely to provide rewards to potential recipients as the experiment progressed, and all but one of the 18 subjects were as likely to deliver rewards to an empty enclosure as to an enclosure housing another chimpanzee. These results, in conjunction with similar results obtained in previous experiments, suggest that chimpanzees are not motivated by prosocial sentiments to provide food rewards to other group members. The Association for the Study of Animal Behaviour. Published by Elsevier Ltd

    Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions

    Full text link
    We study the anisotropy effects measured with INDRA at GSI in central collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics

    The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics

    Get PDF
    Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1-RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed
    corecore