96 research outputs found

    Molecular analysis of predation by carabid beetles (Carabidae) on the invasive Iberian slug Arion lusitanicus

    Get PDF
    The invasive Iberian slug, Arion lusitanicus, is spreading through Europe and poses a major threat to horticulture and agriculture. Natural enemies, capable of killing A. lusitanicus, may be important to our understanding of its population dynamics in recently invaded regions. We used polymerase chain reaction (PCR) to study predation on A. lusitanicus by carabid beetles in the field. A first multiplex PCR was developed, incorporating species-specific primers, and optimised in order to amplify parts of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of large Arion slugs, including A. lusitanicus from the gut contents of the predators. A second multiplex PCR, targeting 12S rRNA mtDNA, detected predation on smaller Arion species and the field slug Deroceras reticulatum. Feeding trials were conducted to measure the effects of digestion time on amplicon detectability. The median detection times (the time at which 50% of samples tested positive) for A. lusitanicus and D. reticulatum DNA in the foreguts of Carabus nemoralis were 22 h and 20 h, respectively. Beetle activity-densities were monitored using pitfall traps, and slug densities were estimated using quadrats. Predation rates on slugs in the field by C. nemoralis in spring ranged from 16–39% (beetles positive for slug DNA) and were density dependent, with numbers of beetles testing positive being positively correlated with densities of the respective slug species. Carabus nemoralis was shown to be a potentially important predator of the alien A. lusitanicus in spring and may contribute to conservation biological control

    Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge

    Get PDF
    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific

    The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    Get PDF
    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts

    DNA Microarrays for Identifying Fishes

    Get PDF
    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products

    Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy

    Get PDF
    Background: The Astrophorida (Porifera, Demospongiae(rho)) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings: With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 59 end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion: The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification can be explained by the banality of convergent evolution and secondary loss in spicule evolution. These processes have taken place many times, in all the major clades, for megascleres and microscleres

    Enamel thickness variation in the deciduous dentition of extant large-bodied hominoids

    Get PDF
    Objectives: Enamel thickness features prominently in hominoid evolutionary studies. To date, however, studies of enamel thickness in humans, great apes, and their fossil relatives have focused on the permanent molar row. Comparatively little research effort has been devoted to tissue proportions within deciduous teeth. Here we attempt to fill this gap by documenting enamel thickness variation in the deciduous dentition of extant large‐bodied hominoids. Materials and methods: We used microcomputed tomography to image dental tissues in 80 maxillary and 78 mandibular deciduous premolars of Homo sapiens, Pan troglodytes, Gorilla, and Pongo. Two‐dimensional virtual sections were created from the image volumes to quantify average (AET) and relative (RET) enamel thickness, as well as its distribution across the crown. Results: Our results reveal no significant differences in enamel thickness among the great apes. Unlike the pattern present in permanent molars, Pongo does not stand out as having relatively thicker‐enameled deciduous premolars than P. troglodytes and Gorilla. Humans, on the other hand, possess significantly thicker deciduous premolar enamel in comparison to great apes. Following expectations from masticatory biomechanics, we also find that the “functional” side (protocone, protoconid) of deciduous premolars generally possesses thicker enamel than the “nonfunctional” side. Discussion: Our study lends empirical support to anecdotal observations that patterns of AET and RET observed for permanent molars of large‐bodied apes do not apply to deciduous premolars. By documenting enamel thickness variation in hominoid deciduous teeth, this study provides the comparative context to interpret rates and patterns of wear of deciduous teeth and their utility in life history reconstructions

    Discrimination and phylogeny of solenogaster species through the morphology of hard parts (Mollusca, Aplacophora, Neomeniomorpha)

    No full text
    Volume: 198Start Page: 121End Page: 15
    • …
    corecore