414 research outputs found

    A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study.

    Get PDF
    Intratumoural heterogeneity has been previously shown to be related to clonal evolution and genetic instability and associated with tumour progression. Phenotypically, it is reflected in the diversity of appearance and morphology within cell populations. Computer-extracted features relating to tumour cellular diversity on routine tissue images might correlate with outcome. This study investigated the prognostic ability of computer-extracted features of tumour cellular diversity (CellDiv) from haematoxylin and eosin (H&E)-stained histology images of non-small cell lung carcinomas (NSCLCs). In this multicentre, retrospective study, we included 1057 patients with early-stage NSCLC with corresponding diagnostic histology slides and overall survival information from four different centres. CellDiv features quantifying local cellular morphological diversity from H&E-stained histology images were extracted from the tumour epithelium region. A Cox proportional hazards model based on CellDiv was used to construct risk scores for lung adenocarcinoma (LUAD; 270 patients) and lung squamous cell carcinoma (LUSC; 216 patients) separately using data from two of the cohorts, and was validated in the two remaining independent cohorts (comprising 236 patients with LUAD and 335 patients with LUSC). We used multivariable Cox regression analysis to examine the predictive ability of CellDiv features for 5-year overall survival, controlling for the effects of clinical and pathological parameters. We did a gene set enrichment and Gene Ontology analysis on 405 patients to identify associations with differentially expressed biological pathways implicated in lung cancer pathogenesis. For prognosis of patients with early-stage LUSC, the CellDiv LUSC model included 11 discriminative CellDiv features, whereas for patients with early-stage LUAD, the model included 23 features. In the independent validation cohorts, patients predicted to be at a higher risk by the univariable CellDiv model had significantly worse 5-year overall survival (hazard ratio 1·48 [95% CI 1·06-2·08]; p=0·022 for The Cancer Genome Atlas [TCGA] LUSC group, 2·24 [1·04-4·80]; p=0·039 for the University of Bern LUSC group, and 1·62 [1·15-2·30]; p=0·0058 for the TCGA LUAD group). The identified CellDiv features were also found to be strongly associated with apoptotic signalling and cell differentiation pathways. CellDiv features were strongly prognostic of 5-year overall survival in patients with early-stage NSCLC and also associated with apoptotic signalling and cell differentiation pathways. The CellDiv-based risk stratification model could potentially help to determine which patients with early-stage NSCLC might receive added benefit from adjuvant therapy. National Institue of Health and US Department of Defense

    Image analysis reveals molecularly distinct patterns of TILs in NSCLC associated with treatment outcome.

    Get PDF
    Despite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000 LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images were different between LUAD (N = 421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and predictive of response to therapy in the clinical trial CA209-057 (n = 303). In LUAD, the prognostic TIL signature was primarily comprised of CD4+ T and CD8+ T cells, whereas in LUSC, the immune patterns were comprised of CD4+ T, CD8+ T, and CD20+ B cells. In both subtypes, prognostic TIL features were associated with transcriptomics-derived immune scores and biological pathways implicated in immune recognition, response, and evasion. Our results suggest the need for histologic subtype-specific TIL-based models for stratifying survival risk and predicting response to therapy. Our findings suggest that predictive models for response to therapy will need to account for the unique morphologic and molecular immune patterns as a function of histologic subtype of NSCLC

    Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells

    Get PDF
    During early wound healing (WH) events Connexin 43 (Cx43) is down-regulated at wound margins. In chronic wound margins, including diabetic wounds, Cx43 expression is enhanced suggesting that down-regulation is important for WH. We previously reported that the Cx43 mimetic peptide Gap27 blocks Cx43 mediated intercellular communication and promotes skin cell migration of infant cells in vitro. In the present work we further investigated the molecular mechanism of Gap27 action and its therapeutic potential to improve WH in skin tissue and diabetic and non-diabetic cells. Ex vivo skin, organotypic models and human keratinocytes/fibroblasts of young and old donors and of diabetic and non-diabetic origin were used to assess the impact of Gap27 on cell migration, proliferation, Cx43 expression, localization, phosphorylation and hemichannel function. Exposure of ex vivo WH models to Gap27 decreased dye spread, accelerated WH and elevated cell proliferation. In non-diabetic cell cultures Gap27 decreased dye uptake through Cx hemichannels and after scratch wounding cells showed enhanced migration and proliferation. Cells of diabetic origin were less susceptible to Gap27 during early passages. In late passages these cells showed responses comparable to non-diabetic cells. The cause of the discrepancy between diabetic and non-diabetic cells correlated with decreased Cx hemichannel activity in diabetic cells but excluded differences in Cx43 expression, localization and Ser368-phosphorylation. These data emphasize the importance of Cx43 in WH and support the concept that Gap27 could be a beneficial therapeutic to accelerate normal WH. However, its use in diabetic WH may be restricted and our results highlight differences in the role of Cx43 in skin cells of different origin

    Heterogenous presence of neutrophil extracellular traps in human solid tumours is partially dependent on IL-8

    Get PDF
    Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8+ T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8+ T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8+ T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8+ tumour-infiltrating lymphocytes

    Strategies to design clinical studies to identify predictive biomarkers in cancer research

    Get PDF
    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework—the DESIGN guidelines—to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field

    The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.

    Get PDF
    OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force

    Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome

    Get PDF
    Mutations in GJB2, which encodes Cx26, are one of the most common causes of inherited deafness in humans. More than 100 mutations have been identified scattered throughout the Cx26 protein, most of which cause nonsyndromic sensorineural deafness. In a subset of mutations, deafness is accompanied by hyperkeratotic skin disorders, which are typically severe and sometimes fatal. Many of these syndromic deafness mutations localize to the amino-terminal and first extracellular loop (E1) domains. Here, we examined two such mutations, A40V and G45E, which are positioned near the TM1/E1 boundary and are associated with keratitis ichthyosis deafness (KID) syndrome. Both of these mutants have been reported to form hemichannels that open aberrantly, leading to “leaky” cell membranes. Here, we quantified the Ca2+ sensitivities and examined the biophysical properties of these mutants at macroscopic and single-channel levels. We find that A40V hemichannels show significantly impaired regulation by extracellular Ca2+, increasing the likelihood of aberrant hemichannel opening as previously suggested. However, G45E hemichannels show only modest impairment in regulation by Ca2+ and instead exhibit a substantial increase in permeability to Ca2+. Using cysteine substitution and examination of accessibility to thiol-modifying reagents, we demonstrate that G45, but not A40, is a pore-lining residue. Both mutants function as cell–cell channels. The data suggest that G45E and A40V are hemichannel gain-of-function mutants that produce similar phenotypes, but by different underlying mechanisms. A40V produces leaky hemichannels, whereas G45E provides a route for excessive entry of Ca2+. These aberrant properties, alone or in combination, can severely compromise cell integrity and lead to increased cell death
    corecore