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Image analysis reveals molecularly distinct patterns of TILs in
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Despite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSCQ), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000
LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images
were different between LUAD (N =421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and
spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with
OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and
predictive of response to therapy in the clinical trial CA209-057 (n = 303). In LUAD, the prognostic TIL signature was primarily
comprised of CD4™ T and CD8* T cells, whereas in LUSC, the immune patterns were comprised of CD4" T, CD8" T, and CD20" B
cells. In both subtypes, prognostic TIL features were associated with transcriptomics-derived immune scores and biological
pathways implicated in immune recognition, response, and evasion. Our results suggest the need for histologic subtype-specific
TIL-based models for stratifying survival risk and predicting response to therapy. Our findings suggest that predictive models for
response to therapy will need to account for the unique morphologic and molecular immune patterns as a function of histologic

subtype of NSCLC.
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INTRODUCTION

Lung cancer results in more than one million deaths worldwide
each year'. Non-small cell lung cancers (NSCLC) comprise around
85% of all lung malignancies in the United States? and have an
average 5-year survival rate of less than 21%3. The most common
types of NSCLC include adenocarcinoma (LUAD) and squamous
cell carcinoma (LUSC). LUAD originates from specialized glandular-
like epithelial cells, and LUSC arises from flat epidermoid cells
lining the lung airways. These histologic NSCLC variants differ in
their pathophysiology, clinical features, prognosis, and treatment
sensitivity. For example, LUAD has significantly better stage-
specific 5-year overall survival (OS) as compared to LUSC* In
chemotherapy, a multiple-enzyme inhibitor, pemetrexed, is
utilized in LUAD instead of in LUSC®. Further, immune subtyping
using gene expression patterning shows that LUAD and LUSC
have different immune checkpoint expression and microenviron-
ment factors®.

Cells in the microenvironment surrounding the tumor such as
stromal and immune cells are intrinsically related to tumor
development, growth, and progression’~°. Recent findings sug-
gest that tumor-infiltrating lymphocytes (TILs) have strong
prognostic influence and can differentiate outcomes within each
tumor, node, and metastasis stage (TNM). High levels of tumor-
infiltrating stromal CD3™ TILs have significant prognostic impact
on TNM staging in NSCLC across stages’. A number of studies
have shown that TIL density has been associated with disease
prognosis for several cancer types'®'®. Some studies have

suggested that the spatial patterns of TIL arrangement might
potentially be even more prognostically important as compared to
TIL density or count'®'7'® Despite known histological and
pathophysiological differences between LUAD and LUSC, rela-
tively little is known about the morphologic differences in the
spatial patterns of immune cells from H&E images across stages.
For example, Corredor et al. previously found that the spatial
arrangement of TILs was associated with the likelihood of
recurrence in early-stage NSCLC'® but did not consider potential
differences between LUAD and LUSC. Studies have reported the
importance of immune composition in determining therapeutic
efficacy in various cancer types'®. Objective measurement of
molecular composition of TILs using multiplexed quantitative
immunofluorescence images (QIF) showed that increased levels of
CD8*' T cells are associated with better outcome in NSCLC.
However, the difference in molecular composition of prognostic
TIL signatures from hematoxylin and eosin (H&E) images in LUAD
and LUSC has not been rigorously studied. Understanding both
morphologic and molecular differences in the immune contexture
in LUAD and LUSC will help evaluate these histologic subtypes
toward developing more personalized risk stratification models.
Additionally, this could help to develop a more accurate
prediction of benefit or response to therapies, such as
chemotherapies or immune checkpoint inhibitors blockade, for
LUAD and LUSC separately?°.

In this work, we use machine learning to model the
morphologic and molecular differences in immune patterns in
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digitized H&E images and associate these patterns with OS in
LUAD and LUSC across different TNM stages. We consider TIL as
any lymphocyte located within tumoral tissue, which includes
both intratumoral and stromal lymphocytes?'. Specifically, we (1)
investigate the spatial morphologic patterns of TILs from H&E
images that are associated with OS in 421 LUAD and 438 LUSC
separately using Cox proportional hazard regression models; (2)
assess whether these prognostic TIL signatures for LUAD and LUSC
respectively are molecularly distinct in their immune composition
using QIF images for major TIL subsets (N =62 for LUAD, 21 for
LUSQC); (3) characterize the association between the spatial
patterns of TILs on H&E images with transcriptomics-derived
immune scores (ISs) and biological pathways implicated in
immune recognition, response, and evasion by performing
single-sample gene-set enrichment analysis (ssGSEA); and (4)
evaluate whether the computationally derived TIL signatures were
associated with OS in 100 NSCLC patients treated with more than
six different neoadjuvant chemotherapy regimens and whether
the TIL signatures are predictive of response to Nivolumab and
Docetaxel in 303 LUAD patients. To investigate the association
between the TIL signatures and clinical outcome, we build Cox
proportional hazard models separately for LUAD and LUSC using
different sets of computer-extracted features such as TIL-density-
based features and TIL-spatial-arrangement-based features from
the H&E images. Figure 1 shows the overall methodology
comprising feature extraction, region selection, risk model
construction, determining molecular composition of prognostic
TIL signatures, and IS and pathway association.

RESULTS
Datasets and image features

Six datasets were used in this retrospective study. The first two
datasets include pre-treatment whole slide images (WSls) of H&E
pathology scans of 585 LUAD patients (D;) and 504 LUSC patients
(D,), at 40%, which were obtained from The Cancer Genome Atlas
of National Cancer Institute (TCGA)???%. The third and fourth
datasets consist of pre-treatment formalin-fixed paraffin-
embedded tumor sections from retrospectively sampled 126
LUAD (D;) and 36 LUSC (D,) patients collected at Yale Pathology®.
The dataset was represented in tissue microarrays (TMA) with 0.6-
mm cores from each of the paraffin blocks. The TMAs were
obtained via the standard TMA preparation protocol®*. We also
acquired corresponding QIF images for D; and D,. The general
multiplexing TILs immunofluorescence staining protocol was used
to simultaneously detect cytokeratin positive tumor cells and
major TIL subtypes, namely CD4" T, CD8" T, and CD20™" B cells'%
Specifically, the TMAs were subjected to antigen retrieval using
EDTA buffer (Sigma-Aldrich, St Louis, MO) with pH=8.0. With
isotype-specific primary antibodies, staining for pancytokeratin,
CD3, CD8, and CD20 was performed to detect epithelial tumor
cells, T lymphocytes, cytotoxic T cells, and B lymphocytes. Nuclei
from all cells was stained using 4/,6-diamidino-2-phenylindole.
This process yielded the QIF images for each patient in D3 and D,
with each patient having one QIF image for each TIL subtype,
CD4* T,CD8" T, and CD20™ B cells. The fifth dataset (Ds) included
123 patients with locally-advanced LUAD from University of Bern
in Switzerland (UBern), which were scanned using a Pannoramic
P250 Flash lll scanner at 20x (0.242 microns per pixel)?. A subset
of 63 patients was treated with chemotherapy prior to resection of
which 57 patients in neoadjuvant intention and 60 patients were
primary resected LUAD with pathologically confirmed infiltration
of lymph nodes of at least the mediastinal level (indication of a
locally-advanced stage). Patients of the neoadjuvant subset
received platinum-based chemotherapy in different combinations:
(1) Cisplatin plus Docetaxel, (2) Carboplatin plus Paclitaxel, (3)
Cisplatin plus Pemetrexed, (4) Cisplatin plus Gemcitabine, (5)
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Cisplatin plus Vinorelbine, (6) Cisplatin plus Etoposide, and (7)
other. The sixth dataset consists of 303 patients from CA209-0572°
(ClinicalTrials.gov number NCT01673867). Briefly, CA209-057 is a
phase 3 randomized clinical trial designed to compare OS of
advanced non-squamous NSCLC subjects treated with either
Nivolumab (n=162) or Docetaxel (n=141) after failure of
previous platinum-based chemotherapy. The response status
(responder/non-responder) was defined by the Response Evalua-
tion Criteria in Solid Tumors version 1.1%°. Quality check and
preprocessing (see Methods for details) resulted in six datasets for
this study, including 421 TCGA-LUAD (D;), 438 TCGA-LUSC (D,), 62
Yale-LUAD (Ds), 21 Yale-LUSC (D,), 100 UBern-LUAD (Ds), and 303
CA209-057 (Dg) cases suitable for the downstream analysis. The
detailed clinicopathologic characteristics for each dataset are
shown in Table 1. Corresponding clinicopathologic and outcome
information from patients were obtained from the institutions at
which the datasets were collected (University of Bern, Yale
University, Bristol Myers Squibb) after obtaining the respective
institutional review board approvals.

Using the algorithm of Veta et al.?’, individual nuclei were then
identified from tiled H&E images of size 2048 by 2048 pixels in D,
D,, Ds, and Dg, and from TMA spots in Dy and D,. TILs were
distinguished from non-TILs in D,, D,, Ds, and D¢ via a support
vector machine classifier’ (see Methods for details). After
targeted tile selection for reducing computational complexity, a
total of five groups of features were extracted for the downstream
analysis: graph- and shape-based features on all nuclei without
distinguishing TILs and non-TILs (960 features), on TILs (960
features), and on non-TILs (960 features), TIL spatial arrangement
features (SpaTIL, 1400 features), and TIL density features (DenTIL,
76 features) (see Methods for details).

Experiment 1: Spatial morphological patterns of TILs in H&E
images are different between LUAD and LUSC

Figure 2 shows the Kaplan-Meier survival curves obtained by
applying the trained models (Mpge VAP and Myge V%) using the
training sets (D,"", n = 294) and (D,"", n = 306) with TIL-based
features on the independent test sets using D, (n=127) and
D,** (n =132). In Dy, as shown in Fig. 2a, the model (Myge-Y"P)
trained using TIL density measures was statistically significantly
prognostic of OS when applied to the testing set D, with a
hazard ratio (HR) of 2.38 (95% confidence interval (Cl) = 1.32-4.29,
p value =0.011, concordance-index (C-index) = 0.606 (95% ClI
0.516-0.696, standard error (SE) = 0.046)). The TIL density signa-
tures were also prognostic of OS in the external validation set Ds
with an HR of 2.37 (95% Cl 1.32-4.25), a p value of 0.0012, and a
C-index of 0.659 (95% Cl 0.585-0.733 S, SE =0.038). A qualitative
evaluation of TIL density features is shown in Fig. 3a-h. As may be
observed, TIL density is higher in low-risk than in high-risk
patients.

In D,, the prognostic features in the independent test set D,
using Myge"YUC were broadly related to spatial distribution of TILs.
Specifically, both models using (1) graph- and shape-based
features on TILs shown in Fig. 2f, and (2) spatial arrangement/
co-localization features on TILs and non-TILs shown in Fig. 2d were
associated with OS, respectively (in D,** of graph- and shape-
based features, HR = 2.00, 95% Cl = 1.19-3.38, p value = 0.0083,
C-index = 0.561 (95% Cl 0.477-0.645, SE =0.043); in D,"™* of
spatial arrangement features, HR=2.43, 95% Cl=1.43-4.13,
p value = 0.00064, C-index = 0.649 (95% Cl 0.563-0.735,
SE =0.044). A qualitative evaluation of prognostic graph- and
shape-based features, specifically the distance to three nearest
neighbors for each TIL, is shown in Fig. 3i-p. As may be observed,
the average distance from each TIL to its three nearest neighbors
is shorter in the low-risk compared to the high-risk patient.
Supplementary Table 1 shows a complete list of the feature
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Fig.1 The overall procedure of this study. a Preprocessing and feature extraction. The original whole slide image of each patient was tiled into
image patches of size 2048 by 2048 pixels. This was followed by automated nuclei detection using a watershed-based algorithm and graph-
and shape-based feature extraction from the detected nuclei. Targeted tile selection was then performed to select the most representative
tiles determined by a dimensionality reduction-based algorithm from each case. TILs were then detected using a Support Vector Machine
model followed by extraction of multiple TIL-based features. b Construction of prognostic models using TIL-based features extracted from H&E
images using Cox proportional hazards regression model with the least shrinkage and selection operator (LASSO) method as a feature
selection tool. ¢ Determination of the molecular composition of prognostic signals identified from H&E images by first co-registering the QIF
images and their corresponding tissue microarrays (TMA) and then interrogating the molecular composition of the TIL patterns identified as
prognostic from H&E images. d Features-Pathway association. The association between prognostic features from H&E images and (1) biological
pathways implicated in immune recognition, response, and evasion, and (2) ISs was studied. e Prediction of response status using TIL density
feature-predicted risk categories identified from b in advanced NSCLC patients treated with chemotherapy.

description for the prognostic features and their associated
weights from the LASSO method?®.

For both LUAD and LUSC (D; and D,), models (Myge"YAP and
Mpge V) trained with graph- and shape-based features on all
nuclei, graph- and shape-based features on non-TILs, and clinical
features (gender, age, tumor stage, and cigarettes per day) did not
yield statistically significant results on the independent test sets
D™t and D,"** (see Supplementary Fig. 2).

In this paper, the term “spatial distribution” generally refers to
any features that involve spatial organization of cells, and this
includes spatial arrangement/co-localization features and graph-
based features.

Experiment 2: Molecular composition of prognostic TIL
signatures is different between LUAD and LUSC

Since TIL density measures features were found to be prognostic
of OS in D; (LUAD, N=421) and Ds (LUAD, N = 100), this feature
group was used to construct survival model (Mg;-UAP) using TIL
subtypes from D3 (LUAD, N =62). As shown in Table 2, results in
Ds reveal that density measures of CD4" T and CD8* T cells were

Published in partnership with The Hormel Institute, University of Minnesota

prognostic of OS in Ds. Since both TIL spatial arrangement
features and graph- and shape-based features were found to be
prognostic of OS in D, (LUSC, N = 438), these two feature groups
were then used to construct survival model (MqY>) using TIL
subtypes from D4 (LUSC, N=21). Results in D4 suggest that the
spatial interaction between CD4" T and CD8" T cells and the
interaction between CD4" T and CD20™" B cells were prognostic of
OS in D4 Graph- and shape-based features extracted from both
CD8™ T cells and the combination of CD4*" T cells and CD20" B
cells were prognostic of OS in Ds. A complete list of cross-
validated Kaplan-Meier survival curves on all different feature
groups using different TIL subtypes can be found in Supplemen-
tary Figs. 3, 4 shows the visualization of prognostic features on
different TIL subtypes in D3 and Dj,.

The spatial arrangement between all of the TILs and tumor
cells was prognostic of OS in D, (HR=4.18 (1.19-16.90),
p=0.003, PS=0.02, C-index = 0.579 (SE=0.109)). Neither
density measures on all TILs in D3 nor graph- and shape-based
features on all TILs in D, were statistically significantly
prognostic of OS.

npj Precision Oncology (2022) 33
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Table 1. A summary of the clinicopathologic variables in all cohorts.
TCGA-LUAD (Dy) TCGA-LUSC (D,) Yale-LUAD Yale-LUSC UBern-LUAD CA209-057- CA209-057-
(Ds) (D) (Ds) LUAD LUAD
(DGNivqumab) (DGDocetaxel)
Characteristics Subgroups Training Testing Training Testing CV n (%) CV n (%) External External External
or values n (%) n (%) n (%) n (%) validation n (%) validation n (%) validation n (%)
Gender Male 133 (45.2) 53 (41.7) 225 (73.5) 104 (78.8) 27 (43.5) 15 (71.4) 50 (50.0) 87 (54.0) 77 (55.0)
Female 161 (54.8) 74 (58.3) 81 (26.5) 28 (21.2) 35 (56.5) 6 (28.6) 50 (50.0) 75 (46.0) 64 (45.0)
Tumor stage  Stage | 157 (53.4) 70 (55.1) 137 (44.8) 73 (55.3) 37 (59.6) 14(66.7) 9 (9.0 0 (0) 0 (0)
Stage Il 80 (27.2) 28 (22.0) 106 (34.6) 36 (27.3) 5(8.1) 7 (33.3) 11 (11.0) 0 (0) 0 (0)
Stage lll 40 (13.6) 18 (14.2) 55 (18.0) 21 (15.9) 16 (25.8) 0(0) 70 (70.0) 10 (6.2) 13 (9.2)
Stage IV 13 (4.4) 9 (7.1) 5(1.6) 1(0.8) 4 (6.5) 0(0) 10 (10.0) 152 (93.8) 128 (90.8)
Unknown 4 (1.4) 2 (1.6) 3(1.0 1(1.8) N/A N/A N/A 0 (0) 0 (0)
Mean age years 65+10.1 66 +9.7 67+88 68+7.6 64 +10.5 64+7.2 62+9.7 60+89 62+8.9
Mean overall  days 948 + 971 864 +708 992 + 984 931+924 1084 = 854 2085 + 958 911 +644 635+ 656 437 £ 451
survival time

Experiment 3: Prognostic TIL features are associated with ISs
and biological pathways implicated in immune recognition,
response, and evasion

ISs of Dy and D, from the ESTIMATE algorithm were obtained from
the publicly available website?®. Each patient in the cohort has
one corresponding IS. For LUAD cases (D,), the ISs range from
—1355.85 to 3286.67, and for LUSC cases, they range from
—1651.61 to 3198.31. Two out of the six most discriminant TIL
density features were statistically significantly correlated with the
ISs. These two features are the standard deviation of Density
Matrix Value (DMV, the count of TILs in each grid when dividing
the image tile into a 5 by 5 grid) and the range of the intersection
area between the lymphocytes convex hull and the non-
lymphocytes convex hull (IACHL). Median IS was used to divide
the patients into those with low and high ISs. As shown in Fig. 4a,
the two features significantly associated with ISs also exhibit
significantly different feature values in low-high IS groups.

For LUSC (D,), two out of the five most discriminant graph- and
shape-based features were statistically significantly associated
with ISs (see Fig. 4b). They were the average of distance to three
nearest neighbors of TILs (on individual TILs) and the standard
deviation of Fourier shape descriptor feature of TILs (Fourier
transform of the TIL contour®©). Similar to what is shown for LUAD,
in LUSC cases, the two features significantly associated with ISs
also exhibit differential expression in low-high IS groups. In
addition, no significant correlation was found between prognostic
spatial arrangement features and ISs for LUSC.

RNA-sequencing of 20,531 genes were obtained from TCGA and
they were used to investigate the biological pathways associated
with the prognostic features from H&E images in D; and D,. In
LUAD (D,), 984 genes were significantly associated with the risk
scores derived using prognostic TIL density measures. Using these
genes, a total of 249 biological pathways were obtained from the
Gene Ontology (GO) analysis platform>'32, and 29 of them were
related to immune recognition, response, and evasion. Note that
since this study is mainly concerned with computationally-derived
immune patterns and their biological basis of them, only
biological pathways related to immune activities were used to
associate with prognostic features. Pathways not related to
immune activities were not analyzed. In LUSC (D), 155 genes
were significantly associated with the risk scores derived from
prognostic graph- and shape-based features of TILs. A total of 90
biological pathways were obtained from the GO platform using
risk scores derived from prognostic graph- and shape-based
features of TILs, and 23 of which were the most relevant to our
study. No biological pathways were found using the risk scores
derived from prognostic spatial arrangement features of TILs. For
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each of these immune-related pathways in both LUAD and LUSC,
an enrichment score was assigned to each patient. The statistical
significance of the difference in the distribution of ssGSEA
enrichment scores and (1) the six most prognostic TIL density
features (Fig. 4c) and (2) the five most prognostic graph- and
shape-based features (Fig. 4d) was then calculated. As shown in
Fig. 4c, for two out of six prognostic TIL density features, standard
deviation of DMV and IACHL in LUAD, all of the 29 biological
pathways were significantly differentially expressed in the low-
high feature value groups. Similarly, as shown in Fig. 4d, for two
out of five prognostic graph- and shape-based features in LUSC,
distance to three nearest neighbors and mean of Fourier
descriptor of the TIL contour, all of the 23 biological pathways
were significantly differentially expressed in the low-high feature
value groups.

Experiment 4: Association between prognostic TIL density
features and response to therapy

The DenTIL-predicted risk categories (low or high risk) were used
to predict whether the patients in Dg will respond to therapy or
not. As shown in Fig. 5, the areas under the Receiver Operating
Characteristics curve (AUC) show that DenTIL has predictive power
for response in Nivolumab-treated patients. The model was not
predictive of response for the Docetaxel arm. Interestingly, DenTIL
was not prognostic of OS in Dg, in both Docetaxel and Nivolumab-
treated patients (see Supplementary Fig. 8).

DISCUSSION

LUAD and LUSC are two main histological subtypes of NSCLC33,
Besides the histological differences, LUAD and LUSC have
distinct prognosis and, hence, treatment regimens*3%35,
Different studies have reported the importance of TILs in
clinical outcomes in NSCLC”"'3, Despite the prognostic value of
TIL-based computational image features from H&E in NSCLC,
relatively little is known about whether these features are
distinct between LUAD and LUSC. This begs the question of
whether these TIL-based computational image features reveal
different morphologic patterns of TILs that are prognostic of
outcome in LUAD and LUSC, respectively. Recent studies have
explored the predictive value of immune cell subtypes,
particularly T and B cells, in clinical outcomes and treatment
response using IHC or QIF*3%37 However, the immune
composition of prognostic TIL signatures derived from the
H&E images have not been thoroughly studied.

Results of the first experiment showed that the density
measures of TILs were prognostic of OS in LUAD, whereas the
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D,**** and D,'**%, using Myge"UAP and Myge-YS, respectively, and external validation set Ds. a, ¢, e represent the KM curves of LUAD cases
(D' and b, d, f show the ones for LUSC cases (D,™*"). a, b represent the TIL density measures, ¢, d represent the spatial arrangement
features of TILs (SpaTIL features), and e, f represent the graph- and shape-based features on TILs. g represents TIL density features from Ds.

Statistically significant results are highlighted with asterisks.
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Fig. 3 Visualization of prognostic TIL features in TCGA-LUAD and TCGA-LUSC. a-h represent the TIL density measures in LUAD. a, e show
the original WSIs from a high-risk and a low-risk case, respectively. b, f show example tiles of size 2048 by 2048 pixels from them. ¢, g show the
corresponding TIL maps highlighting the TILs in yellow and non-TILs in blue. TIL density in the low-risk patient is prominently higher than in
the high-risk patient. i-p represent the visualization of Euclidean distance to three nearest neighbors of each TIL in LUSC and the distance was
measured from the centroid of each TIL. i, m show the original 40x WSIs from a high-risk and a low-risk case from D,™ using Mg V>,
respectively. j, n show example tiles of size 2048 by 2048 pixels from them. k, o show the corresponding TIL maps highlighting the TILs in

yellow and non-TILs in blue. The TIL distribution is sparser in a high-risk patient as compared to a low-risk patient.

spatial distribution of TILs was prognostic of OS in LUSC. In LUAD with better survival outcomes as compared to in those with worse
(D;), the TIL density measures were statistically significant outcomes. Results from Ds suggest that the DenTIL signature,
prognostic of OS on an independent test set (D', n =127) as identified by the model trained on primary resection samples in
well as an external validation set (Ds, N=100). Our findings TCGA-LUAD patients, was associated with clinical outcomes in an
suggest that TILs are more densely packed as clusters in patients external validation set of NSCLC patients treated with a plurality of

npj Precision Oncology (2022) 33 Published in partnership with The Hormel Institute, University of Minnesota



R Ding et al.

npj

Table 2.
datasets D3 and D,.

Summary of prognostic results from the cross-validated Kaplan Meier estimation with different TIL subtypes and feature types on the QIF

Dataset Feature type TIL subtype (s)

Cross-validated results

LUAD (Ds3) N = 62 Density measures CD4

LUSC (D4) N = 21 Spatial interaction CD4 versus CD8

Graph- and shape-based CD8
features

CD4 plus CD20

HR = 2.22 (1.11-4.45), p = 0.024, permutation significance (PS) = 0.02,
C-index = 0.638 (95% Cl 0.524-0.752, SE = 0.058)

cD8 HR = 2.16 (1.08-4.31), p = 0.035, PS = 0.03, C-index = 0.618 (95% Cl
0.442-0.794, SE = 0.09)

HR = 4.09 (1.23-13.63), p = 0.01, PS = 0.14, C-index = 0.646 (95% Cl
0.464-0.828, SE = 0.093)

CD4 versus CD20 HR = 3.24 (1.01-10.40), p = 0.038, PS = 0.06, C-index = 0.637 (95% Cl
0.433-0.841, SE = 0.104)

HR = 3.80 (1.16-12.50), p = 0.017, PS = 0.09, C-index = 0.561 (95% ClI
0.42-0.702, SE = 0.072)

HR = 3.43 (1.06-11.10), p = 0.029, PS = 0.10, C-index = 0.567 (95% Cl
0.351-0.783, SE = 0.11)

different neoadjuvant chemotherapeutic regimens. This indicates
that the computationally derived signature is robust in capturing
biological hallmarks of disease aggressiveness, independent of
treatment and tissue sample type.

Results from the external validation set D¢ suggest that the
DenTIL signature, which was prognostic in Dy, was also predictive
of response to treatment in Dg. This suggests that the model
captures signatures related to disease aggressiveness in prediction
of both clinical outcome and treatment response. The model
showed a signal in predicting therapy response for patients
treated with nivolumab but no signal for patients treated with
docetaxel. The following are potential reasons as to why the
classifier was not predictive of response for the docetaxel-treated
patients in De. First, the majority of patients in D¢ are at stage IV
while the model was trained on cohorts with predominantly early-
stage tumors; this prominent biological difference might affect the
survival impact of TILs. Second, the patients in Dg received
treatment in the advanced setting where (1) surgery is not a viable
option due to metastasis and (2) therapeutic schemes are different
from when the treatment is in the neoadjuvant setting (UBern
cohort, Ds) or when the treatment was surgery (TCGA cohort, D,
and D,); this difference in treatment schemes could have resulted
in differential outcomes. Third, the platinum-based therapies used
in D; have a different mechanism of action and biological
consequence as compared to docetaxel-based therapies used in
De. In addition, platinum induces DNA damage and docetaxel
alters microtubule formation, which may also contribute to the
differences in outcomes. Lastly, the TCGA and UBern cohorts
include mostly resected tumors which are relatively larger than
the small needle biopsies used in patients with metastatic disease
in Dg, which may have impacted the ability of the model to
accurately capture the density and spatial distribution of TILs.

The prognostic ability of TIL density measures is consistent with
several previous studies. Corredor et al.'>. found that DenTIL
features were associated with disease recurrence in NSCLC. Other
studies have also reported the association between spatial
variability of lymphocyte infiltration and poor disease-specific
survival®® and the association between TIL fraction and OS in
various cancer types'®. In LUSC (D,), the most predictive feature
was the orientation disorder of TILs, potentially suggesting that
TILs in patients at higher risk might be more disorganized as
compared to the patients at lower risk. While the prognostic value
of cell polarity has not been rigorously shown in NSCLC, it has
been shown to be prognostic of progression in pre-invasive breast
cancer® and of post-operative biochemical recurrence in prostate
cancer®®, Additionally, the spatial distance between TILs was
found to be larger in patients with higher risk as compared to
those with lower risk identified by the Kaplan-Meier estimator and
log-rank test. The prognostic ability of this graph feature is in line
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with the study carried out by Wang et al*'. The spatial
colocalization of TILs and cancer cells was also found to be
prognostic of OS, and using these exact features, Corredor et al.'®
were able to prognosticate recurrence in NSCLC. Taken together,
these results reveal distinct spatial morphologic patterns of TILs in
LUAD and LUSC. TIL density measures were not prognostic in
LUSG; this is in alignment with a study®? that reported a negative
association between TILs and prognosis in LUSC. Even though
previous works explored the association between spatial archi-
tecture of TILs and recurrence in NSCLC'3, our study was different
in that we investigated whether the prognostic ability of the
spatial patterns is different in LUAD and LUSC. Results from this
study indicate the need to build separate TIL-based prognostic
models for these subtypes of NSCLC. The prognostic signals from
the spatial arrangement of TILs in LUSC also suggest the potential
to leverage the spatial attribute of TIL-based biomarkers in
prognosis of other squamous cell carcinomas, such as head and
neck, cervix, or oral cavity squamous carcinomas. Interestingly,
consistency in the prognostic value of morphologic patterns was
found across early and late-stage diseases in both LUAD and LUSC
(see Comparison of prognostic morphologic patterns across stages
section in Methods), although these trends need to be further
validated in a larger set of late-stage patients.

To evaluate the molecular composition of morphologically
distinct TIL signatures in LUAD (Ds) and LUSC (D,), we constructed
survival models using TIL features extracted from CD4* T, CD8" T,
CD20" B cells, as well as different combinations of these TIL
subtypes. In D;, TIL density measures were found to be prognostic
of OS in LUAD. In D;, density measures of CD4" T cells and of
CD8™ T cells were both separately found to be prognostic of OS. In
a study by Schulze et al.*3, strong infiltration of CD4" T cells from
IHC staining was also found to be associated with improved OS in
LUAD. The prognostic value of CD8" T cells is consistent with the
study by Schalper et al.’, in which they also found CD8" T cells
obtained from QIF images to be prognostic of OS in NSCLC
independent of other clinical variables. However, our work
differed from these previous approaches in that we investigated
the spatial distribution of TIL subtypes presented in the images. In
this study, we leveraged computational image features to analyze
the spatial morphologic patterns of TIL subtypes from QIF stained
images. The immune composition of prognostic spatial features of
TILs in LUSC (D,4) was found to be different in comparison with
LUAD (Ds). The spatial interaction between CD4" T and CD8*
T cells (e.g., overlapping area of convex hull area of CD4" T and
convex hull area of CD8" T cells) and the interaction between
CD4" T and CD20" B cells were associated with OS. Specifically,
increasing overlapping area between two TIL subtypes was
associated with better survival. These results suggest that not
only the density of TIL subtypes, but also their spatial
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Fig. 4 Association between prognostic features and (1) immune scores (2) biological pathways. a, b represent the distribution of the
prognostic features for the low and high ISs groups. a is for TCGA-LUAD (D,) and b is for TCGA-LUSC (D). ¢, d show matrices containing the
statistical significance (p values) of the difference in the distribution of enrichment score of biological pathways in patients who had low or
high feature value. The columns represent the enrichment scores and the rows represent the values of the most prognostic features. In both
¢, d, the statistical significance was computed using Wilcoxon Rank Sum Test.
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Fig. 5 Results from Experiment 4. Receiver Operating Character-
istics curves from using DenTIL-predicted risk categories to predict
the response status of patients in D, specifically for the 162 patients
treated with Nivolumab.

colocalization might provide valuable insight into cancer prog-
nosis. Taken together, the results suggest that in LUSC, CD4™" T,
CD8" T, and CD20*" B cells drive the prognostic TIL signatures
related to spatial distribution of TILs; whereas in LUAD, TIL density
measures of CD4" T and CD8*" T cells contribute primarily to
prognosis. In support of this, marked differences in immunoge-
nomic contexture and adaptive anti-tumor responses between
LUAD and LUSC have been reported**4,

To quantify the presence of TILs or the level of immune
infiltration, several approaches such as immunohistochemical
(IHQ) staining and ssGSEA have been used*~*8, Several studies
have shown the importance of ISs in diagnostic and prognostic
tasks in various cancer types®. While there has been substantial
interest in using quantitative histomorphometric features such as
density of immune cells as prognostic biomarkers'0-1517.1841 |ittle
is known about whether these features from H&E images are
reflective of the ISs derived using ssGSEA. Our findings in
Experiment 3 revealed that in both LUAD and LUSC, two of the
prognostic TIL features were associated with ISs. In LUAD, two
prognostic TIL density measures were associated with ISs and
could significantly differentiate low/high IS groups. In general, TIL
density is lower in patients with lower ISs as compared to the ones
with higher ISs. In LUSC, two of the prognostic graph- and shape-
based features were significantly associated with ISs and were
significantly differently expressed in low-high IS groups. The
pathways that were differentially expressed in the low-high
prognostic feature value groups in both LUAD and LUSC are
generally related to immune response, immune system process (a
process related to development and function of immune system),
T cell activation and proliferation, T cell-mediated immunity, and
regulation of antigen receptor-mediated signaling pathway (a
process that regulates the signaling pathways initiated by cross-
linking of antigen receptors on T or B cells) (see Supplementary
Fig. 5 for the complete pathways for LUAD and LUSC). Pathways
that exist in only LUAD include immune effector process (any
process of the immune system contributing to an immune
response), T cell-mediated cytotoxicity, B cell proliferation, antigen
processing and representation via MHC class Ib (antigen-present-
ing cells with antigen of endogenous origin associated with a
MHC non-classical class | molecule protein complex on the cell
surface), and positive regulation of I-kappa B Kinase/NF-kappa B
signaling (related to regulation of activation and differentiation of
innate immune cells and inflammatory T cells)(See Fig. 4 and
Supplementary Fig. 5). Finally, the pathways existing only in LUSC
include immune response-regulating cell surface receptor signal-
ing pathway (molecular signals related to binding of ligand and
receptor on the surface of the target cell capable of activating or
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suppressing immune response), immune response-activating
signal transduction (a series of processes related to change in
activities of downstream messengers that eventually lead to
activation of immune response), and T cell differentiation. The
difference in antigen presentation pathways observed between
LUAD and LUSC is in line with the study by McGranahan et al.*4,
where they found that immune-regulatory genes including
human lymphocyte antigen class | genes and a component of
MHC class | genes had a significantly lower expression in LUSC
than in LUAD.

Even though Corredor et al. identified the prognostic value of
both spatial and density features of TILs in early-stage NSCLC'?,
the present study is a substantial extension over previous work in
that (1) it demonstrated the association of the signature with
clinical outcome in an external validation set of NSCLC patients
treated with more than six different neoadjuvant chemotherapy
regimens, and we further demonstrated the predictive value of
the signature in another external validation set of NSCLC patients
treated with nivolumab, (2) the prognostic value of spatial and
density features were separately investigated in two subtypes of
NSCLC to build subtype specific prognostic models, (3) the
molecular compositions of prognostic TIL patterns were explored
separately in the two subtypes, (4) the association between
prognostic features and both immune scores and biological
pathways was examined, (5) in survival analysis, Cox proportional
hazards regression model*, a more robust model that takes into
account the effect of risk factors on an outcome over time, was
used instead of a binary classifier, (6) WSIs, which can capture the
heterogeneity of the immune cells and tumor cells, were used to
build the prognostic models instead of TMAs, and (7) the sample
size is much larger (N> 1000). In addition, while Zhang et al.>*.
found the differences between LUAD and LUSC in terms of
genomic alternations and pathways, our work mainly focuses on
identifying the differences in terms of computationally-derived
imaging features and their biological basis, which was not
explicitly covered by Zhang et al. We believe that our quantitative
imaging-based approach in interrogating the difference between
LUAD and LUSC could complement more expensive gene
sequencing, while also offering the benefit of being non-
destructive of tissue.

The findings from this study have potential clinical implications.
The fact that prognostic patterns of TILs were found to be
morphologically and molecularly distinct in LUAD and LUSC
suggests the importance of building separate TIL-based prog-
nostic models for the two histologic subtypes. Studies have shown
that computer-extracted features of cancer nuclei from H&E
images®® and spatial arrangement of TILs?>>'°2 can predict
response to immunotherapy in NSCLC and gynecologic cancers
respectively. Based on the findings in this study, one may
speculate that future predictive models for response to therapy
might need to account for the unique morphologic and molecular
immune patterns as a function of histologic subtype of NSCLC.
Further, given the statistically significant association between
computer-extracted TIL features from H&E images and
transcriptomics-derived ISs, one may not need to use immunes-
coring system to prognosticate outcomes. By using routinely
acquired diagnostic H&E slides instead of ISs, the approach that
involves computationally derived TIL features could not only
obviate the need for more expensive gene expression testing and
preserve tissue. Additionally, the approaches described in this
study might also provide more tailored and specific immune
signatures that are respectively predictive for LUAD and LUSC
separately; ISs do not account for spatial heterogeneity of immune
cell distribution. These features could also be potentially
combined with other immunotherapy biomarkers such as PD-L1
immunohistochemistry and tumor mutational burden to enhance
patient selection strategies. Furthermore, the method presented in
this study could be deployed in future clinical practice to assist
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clinical decision-making by providing quantitative and objective
metrics of response and outcome. This pipeline can be applied as
soon as the tissue sample is digitized, so the results could
potentially be ready for the pathologists as they review the slides.

Our study has limitations. While the TIL signatures were found
to be prognostic of OS in both LUAD and LUSC, their predictive
ability such as predicting response to adjuvant chemotherapy or
immune checkpoint blockade was not established. In addition,
cases included in the analysis were collected retrospectively from
multiple institutions and were treated in a non-controlled fashion.
The proportion of tissue compartments (epithelial and stromal
regions) was not taken into consideration during tile selection and
the downstream analysis, which might introduce some bias when
comparing the presence of TILs across tiles/patients. Another
limitation was the possible introduction selection bias on account
of using an automated algorithm to select representative tiles that
are similar to each other. In the future, a solution might be to use
machine learning approaches to automatically identify the entire
tumor region and use all the tiles from that region or to
automatically identify tertiary lymphoid structures and extract TIL
features from them to predict outcome and response to therapy®3.
We also acknowledge there are other pathways unrelated to
immune activities that may also have association with OS in lung
cancer, such as angiogenesis, cell differentiation, proliferation, and
cell cycling®. Future work may benefit from a more comprehen-
sive study analyzing such pathways. Next steps involve addressing
these concerns and validating the prognostic signatures from a
predictive standpoint by which we will evaluate the ability of
these features to predict response to immunotherapy or
chemotherapy in late-stage NSCLC.

In summary, we identified unique spatial morphologic TIL
signatures that were separately prognostic in LUAD and LUSC
based on H&E images, with TIL density measures being prognostic
in LUAD and spatial arrangement of TILs being prognostic in LUSC.
Further, the prognostic ability of TIL density measures was tested
in an external validation set of LUAD patients treated with more
than six different neoadjuvant chemotherapy regimens. Using QIF
images, we further showed that the immune composition of the
morphologically distinct TIL signatures in LUAD and LUSC was
different, with CD4" T and CD8™ T cells dominating the prognostic
signals that capture TIL density measures in LUAD and CD4* T,
CD8" T, and CD20" B cells dominating the prognostic signals
related to spatial distribution of TILs in LUSC. In both LUAD and
LUSC, we discovered associations between prognostic TIL features

immune recognition, response, and evasion were significantly
differentially expressed with respect to the prognostic features in
both LUAD and LUSC. These findings provide a biological basis for
computationally derived prognostic measures from TIL patterns
on H&E images.

METHODS
Quality check and preprocessing

Quality check was performed using HistoQC>®, which provides automated,
guantifiable, and reproducible quality control pipelines for detecting
artifacts that could potentially compromise image analysis. The H&E slides
with suboptimal quality in the dataset were excluded using quality control
measures magnification, brightness pen markings, blurriness, and bubbles
in the images. For D, and D,, inclusion criteria comprised availability of ISs
and overall survival information. For patients with multiple H&E slides, the
slide with the most abundant tumor tissue area, as determined by our
pathologists (P.T., 5 years of experience; P.V., 6 years of experience), was
selected for subsequent computational image analysis. For D3, D4, and Ds,
the inclusion criterion is the availability of overall survival information. For
Dg, the inclusion criteria are the availability of overall survival information,
response status, and histologic subtype being LUAD.

Applying the inclusion and exclusion criteria described above (see Fig. 6)
resulted in six datasets for this study, including 421 TCGA-LUAD (D,), 438
TCGA-LUSC (D,), 62 Yale-LUAD (D3), 21 Yale-LUSC (D,) cases, 100 UBern-
LUAD (Ds), and 303 CA209-057 (D) cases suitable for the downstream
analysis.

TIL detection and feature extraction

Within the tissue areas on the digitized slide images identified as usable by
HistoQC>®, each WSI was partitioned into smaller non-overlapping tiles of
2048 by 2048 pixels at 0.25 microns per pixel for D;, D,, and Dg and at 0.24
microns per pixel for Ds. The number of resulting tiles per patient ranged
from 18 to 2018 for LUAD, and from 16 to 1393 for LUSC. The individual
nuclei on the H&E images were identified and segmented using a
watershed-based algorithm?” from each of the tiled images. For D; and D,
individual nuclei were detected using the same algorithm directly on each
digitized TMA spot. The algorithm applies mathematical operations such as
fast radial symmetry transformation and regional minima at different scales
to detect nuclei. This was followed by a step to distinguish lymphocytes
from non-lymphocytes, using the approach reported in Corredor et al.>.
Briefly, the algorithm involves extracting a series of features relating to the
shape, size, and texture of the individual cells in conjunction with a
machine learning classifier (a support vector machine with linear kernel) to
distinguish TILs from non-TILs. This algorithm was applied to D,, Dy, D3, Dy,
Ds, and De. Two pathologists (P.T., P.V.) provided a qualitative validation of

and ssGSEA-derived ISs. Biological pathways implicated in the nuclei segmentation and TIL detection results.
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Fig. 6 Patient selection workflow for the datasets included in this study. The leftmost column shows the initial datasets. After applying
inclusion and exclusion criteria, the final datasets and their corresponding experiments are shown on the right side.
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A targeted tile selection was performed to reduce computational
complexity by selecting tiles that preserve the most diversity in D, Dy, Ds,
and De. Specifically, Principal Component Analysis®® was used to reduce
the size of the original feature matrix obtained from graph- and shape-
based feature extraction (details below), from 240 dimensions to 2
dimensions. Subsequently, kernel density estimation®” was used to identify
the top 20% most representative tiles corresponding to the kernel density
values for each case. Supplementary Fig. 1 shows the kernel density map
and example tiles from one patient. These selected tiles were used for the
downstream analysis.

19 features relating to the density of TILs (DenTIL features'®) were
extracted. These features include descriptors such as the ratio between the
number of TILs and the tissue area, the ratio between the number of TlLs
and the total number of nuclei, and the ratio between the total area
covered by TILs to the total area of the tissue. A total of 350 features to
quantify the spatial arrangement of TILs and spatial interaction between
TILs and non-TILs (SpaTIL features'®) were also extracted. These features
include area of TIL clusters and the intermixing of the TIL and non-TIL
clusters, among others.

240 graph- and shape-based features were extracted from all the nuclei
(without distinguishing TILs or non-TlLs). These features capture nuclei
arrangement using global graph structures®® such as minimum spanning
tree and Delaunay triangulation, shape features®°, co-occurring gland
tensors (CGTs)*®, cluster graph features®®, and cell run-length (CRL)
features (See Cell run-length feature computation section in Methods). A
complete list of features of the density and spatial patterns of TILs, along
with other graph- and shape-based features are presented in Tables S2, S3,
and S4, respectively.

Features for each case were combined across tiles by calculating
statistics such as mean, median, skewness, and kurtosis. For the prognostic
analysis, a total of five groups of features were extracted: graph- and
shape-based features on all nuclei (960 features), on TILs (960 features),
and on non-TILs (960 features), TIL spatial arrangement features (1400
features), and TIL density features (76 features). In case of missing feature
values for cluster graph features and CRL features, data imputation®’ was
performed using the average feature values of patients from the same
tertile of IS groups. The total number of missing features value was less
than one percent.

Cell Run-length (CRL) feature computation

The quantitative measurements based on local cell graphs have previously
been found to be prognostic in oropharyngeal cancers®®. While most
global and local cell graphs measurements are based on a count of the
number of vertices/edges, edge lengths, the CRF involves capturing graph
complexity by measuring the total number of different ways/runs that the
cell graph vertices can be traversed. Steps that comprise the extraction of
CRL features are (1) nuclei detection, which was described in the Methods
section, (2) nuclei sub-graph construction, (3) CRL computation for each
nuclear sub-graph, and (4) CRL feature computation.

For nuclear sub-graph construction, pairwise spatial relationships
between cells are defined via localized sub-graphs. A graph G ={V;, Eg},
where Vs represents the set of n nuclear centroids y;,y; € Ve,i,j €
{1,2, ... ,n} as nodes, and Eg represents the set of edges which connect
them. The edges between all pairs of nodes y;, y; were computed via the
following probabilistic decaying function

D:{(i7j):r<d(i$j)7arvY/'7yj€V}a (1)

where d (i, j) represents the Euclidean distance between y; and y;. a=0
controls the density of the graph, where a approaching 0 represents a high
probability of connecting nodes while aapproaching oo conversely
represents a low probability. r € [0,1] is an empirically determined edge
threshold.

In CRL computation, for every nuclear sub-graph, a cell run-length vector
is computed. An example cell graph, comprising 6 cells is shown in
Supplementary Fig. 7a, where each vertex represents a cell. A cell run is
defined as a single traverse from an end point of a cell graph to the other.
The length of run is defined as the total number of cells being traversed in
a run. We denote a length of n runs as n-runs. In Supplementary Fig. 7a, the
cell graph has one 6-run. The corresponding run length vector is defined as
the number of cell runs associated with different lengths of runs.

In the example shown in Supplementary Fig. 7b, the length of runs is
numbered from 2 to 6, so that the run-length vector is R=1[0,0,0,0,1].
Another example of a local cell graph is shown in Supplementary Fig. 7¢, in
which the cell graph also consists of six cells. However, it contains one
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5-run and one 6-run, the corresponding run-length vector is R=[0,0,0,1,1].
In terms of the total number of cell runs, the cell graph shown in
Supplementary Fig. 7c is more complex compared to the one shown in
Supplementary Fig. 7b.

For CRL features computation, we denote the total number of cells in a
cell graph as n,, a specific length of run as r and its corresponding number
of runs as R(r), the total number of runs in the run-length vector is denoted
via n, =Y R(r). The four features: short-run emphasis ¢sge long-run
emphasis "¢ re, run-length non-uniformity ¢g,n, run percentage ¢re,
extracted from the cell run-length vector are then determined as follows:

1

Psre :EZ(R(’)/’Z)«, (2)
1

¢LRE:EZ(R(r)X”2)7 (3)
1

Prn = n_rZR(r)z’ (4)

and

Prp = :—Z (5)

The short-run emphasis ¢sge aims to emphasize the shorter cell runs in a
cell graph. If one cell graph contains a larger number of shorter runs
compared to longer runs, ¢sge will be large. In contrast, the long-run
emphasis ¢z places more importance on longer cell runs compared to
shorter ones. If one cell graph contains more long runs compared to
shorter ones, ¢z Will be large. The run-length non-uniformity ¢gn is
determined by the distribution of cell runs in the run-length vector. It
reaches its lower bound while the cell runs are evenly distributed over all
run lengths. The run percentage ¢gp involves calculating the average cell
runs for each cell in the cell graph. If a cell graph has a complex spatial
arrangement, the value of ¢gp will be large. Since we have several nuclear
sub-graphs in any histology image, we employ first-order statistics, mean,
standard deviation, kurtosis, skewness, and range, to obtain the final CRL
signature for the entire image. Thus, for each image, we have a total of 20
CRL features.

Co-registration between H&E and QIF images

The subtype assignment for each TIL was challenging due to the imperfect
alignment between QIF and H&E images obtained from consecutive tissue
sections and the partial overlap of different TIL subtypes on a single cell
basis. Different cells have different directions and degrees of misalignment
with the corresponding TMA boundaries. Piecewise linear transformation
and projective transformation®? were used to register the H&E and QIF
images. Weighted pixel intensity values of each cell from QIF images were
then used to identify the TIL subtype on a per-cell basis. More information
on the TIL subtype marker assignment process can be found in Methods
under the section TIL subtype marker assignment process.

TIL subtype marker assignment process

The goal was to assign a TIL subtype to each TIL identified from the TMAs.
After co-registering QIF images with their corresponding TMA spots, the
goal was to identify TIL subtypes on a per-cell basis. This process was
based on the comparison of pixel intensities of each cell across images.
Specifically, the first step involves getting the pixel intensities around the
membrane of each cell where the fluorescent staining is found. Pixel values
(0-255) were binned into ten equal-sized segments. Bins belonging to a
higher intensity range got higher weights as compared to the bins from a
lower intensity range. The product between the number of pixels within a
segment and the corresponding weight of that segment was then
summed up to be a single value. Then, the ratio between that value and
the maximum possible weighted pixel values was obtained. The AQUA
value®, a quantity used to account for different exposure time of different
markers, was then multiplied with the ratio to achieve the intensity
correction. By repeating the steps on each cell, we get an intensity
corrected final single value for each cell, and the one with the maximum
value was assigned to be the true type.
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Statistics

Cox proportional hazards regression model*® was built separately for D;,
D,, D3, and D4 with the LASSO?® method as a feature selection tool. After
feature selection, a risk threshold was computed to separate the patients
into two different risk groups. The risk score R of the ith patient is defined
asR =51, x;B;, where x;; is the jth feature for the ith patient, and ; is the
weight or coefficient of the jth selected feature returned by the LASSO
method.

The score threshold for dividing patients into low- and high-risk was
determined on the training set, and applied to the hold-out testing set of
D, D,, and the external validation sets D5 and Dg. In training, a three-fold
cross validation was used to fit the model. The chosen score threshold was
the one yielding statistically significantly different survival risk groups and
with the maximum hazard ratio among thresholds yielding a maximum
difference in median survival time between the low-risk and high-risk
groups. Furthermore, to measure the efficacy of the survival prediction
models, the C-Index, log-rank test, HR (95% Cl) of each model was
evaluated.

Due to the lower sample size for D3 (N=62) and D4 (N=21), cross-
validation was used for the evaluation of the survival risk model and
construction of Kaplan-Meier survival estimates®® in these two datasets. To
evaluate the significance of the log-rank statistic of the cross-validated
Kaplan Meier curves, a permutation test®* was performed to get the
permutation distribution of the log-rank statistic. More details can be
found in Methods section Cross-validated Kaplan-Meier survival curves for
QIF dataset.

Cross-validated Kaplan-Meier survival curves for QIF dataset

Cross-validation was used for the evaluation of survival risk model and
construction of Kaplan-Meier survival curves®® on the QIF datasets D5 and
D, due to the small sample size. In the first iteration of the cross validation
(global cross validation), 30% of the patients were randomly selected as
the testing set, while the rest of the patients were used for training the
survival model. Within the training set of this iteration, the same as in
Experiment 1, a threefold cross validation (local cross validation) was used
to fit the model. Risk scores were computed as the dot product between
selected features and feature weights returned by LASSO. The median risk
score was used to separate the patients in the training set into low/high
risk groups. In the testing set, patients were divided into low/high risk
groups based on the threshold identified from the training set. In the next
iteration of the global cross validation, another distinct subset of 30% of
the patients (non-overlapping with the subset from the first iteration) were
used as a testing set and were divided into low/high risk groups. This
global cross validation was repeated until every patient was accounted for
in the testing set once and was assigned a risk score. At the end, the low-
risk group of the cross-validated Kaplan-Meier curve consisted of all
patients classified as low-risk in any of the iteration from the global cross
validation, and similarly for the high-risk group.

To evaluate the significance of the log-rank statistic of the cross-
validated Kaplan Meier curves, a permutation test was performed to get
the permutation distribution of the log-rank statistic®>. During each
iteration of the permutation test, the correspondence of features of
different patients was randomly permuted to different survival time and
corresponding censoring status. Then the global cross validation was again
run using the permuted data. The cross-validated log-rank statistic was
then obtained from that permutation test. This was repeated 500 times
and the statistical significance level was calculated as the number of times
the permuted log-rank statistic was greater than or equal to the un-
permuted data. The significance level is an indication of the degree to
which survival outcome is independent of the features. The lower the
significance level, the more the survival outcome depends on the features.

Comparison of morphologic patterns across stages

The purpose of this analysis is to check if both the morphologic and
molecular differences observed in LUAD and LUSC are consistent across
different stages of diseases. To check the consistency of morphologic
patterns, the most discriminant features as shown in Supplementary Table
1 of early (stage | and Il) and late stage (stage Ill and IV) patients in LUAD
(D7) and LUSC (D,) were compared using Wilcoxon Rank Sum Test. After
applying multiple comparison correction, no statistically significant
difference was found across all feature groups except for a graph-based
feature in D,, the graph average distance to three nearest neighbors of TILs
(p = 0.024. See Supplementary Fig. 6). Specifically, patients with late stage
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disease have higher value for this particular feature, which may suggest
that the TILs were more sparsely distributed in those patients. The
consistency of molecular differences across different stages in the QIF
cohort could not be checked since there were no late-stage patients in
LUSC (D).

Experiment 1: Identifying differences in spatial morphologic
patterns of TILs in H&E images between LUAD and LUSC

The purpose of this experiment is to investigate whether the spatial
morphologic patterns of TILs from H&E images are potentially different
between LUAD and LUSC. To achieve this, five spatial morphologic feature
groups, as mentioned in the Feature Extraction section, were used to build
five distinct prognostic models independently in LUAD and LUSC. For each
of the five prognostic models in D; and D, respectively, 70% of the cases
were randomly subsampled to be in the training set, and the remaining
30% were in the independent testing set. This resulted in 294 patients in
the training set (D;"@") and 127 patients in the independent testing set
(D;***Y) for D,, and 306 patients in the training set (D,"") and 132 patients
in the independent testing set (D,"*") for D,. The model trained using D,
(feature weights and risk threshold) was also directly applied to the
external validation sets Ds and Dg. Features were normalized to a range
between 0 and 1, and the same normalization mapping was applied to the
test set and the external validation set.

Experiment 2: Identifying differences in molecular
composition of prognostic TIL signatures between LUAD and
LUSC using QIF images

We sought to further investigate whether the TIL signatures found to be
prognostic in Dy and D, are distinct in their immune composition using the
QIF images in D3 and D,. In other words, the purpose of Experiment 1 was
to identify a set of prognostic features, and the purpose of Experiment 2
was to investigate the cell composition of the features associated with
clinical outcome identified from Experiment 1. The rationale for this
experiment was that by comparing the performance of these different
survival models across LUAD (Ds) and LUSC (Ds), one could then speculate
the potential differences in the molecular composition of the overall TIL
signatures found to be prognostic in LUAD (D;) and LUSC (D,). To achieve
this, groups of spatial morphologic features found to be prognostic of OS
in D; and D, were extracted from a total of six groups of TIL subtypes and
combinations of TIL subtypes presented in D3 and D,, and a new set of
survival models were trained based on these features extracted from Ds
and D,.

Specifically, TIL density measures and graph- and shape-based features
were extracted from (1) CD4*' T cells only, (2) CD8" T cells only, (3) CD20™
B cells only, (4) both CD4* T cells and (plus) CD8* T cells, (5) both CD4*
T cells and CD20" B cells, and (6) both CD8" T cells and CD20* B cells.
SpaTIL features which capture the interaction between 2 groups of cells
were also extracted using the following pairs of cells: (1) CD4" T cells as
group 1 versus the rest of cells as group 2, (2) CD8™ T cells as group 1
versus the rest of cells as group 2, (3) CD20™ B cells as group 1 versus the
rest of cells as group 2, (4) CD4™ T cells as group 1 versus CD8" T cells as
group 2, (5) CD4™ T cells as group 1 versus CD20" B cells as group 2, and
(6) CD8* T cells as group 1 versus CD20" B cells as group 2.

Experiment 3: Association of prognostic features from H&E
images with ISs and biological pathways

The ISs used in this study (for D; and D,) were obtained from the ESTIMATE
algorithm presented by Yoshihara et al.?°, where an immune signature was
used to capture the presence of infiltration of immune cells in the tumor
region. To generate these signatures, immune-cell related gene signatures
were obtained using the overlap between gene expression profiles of
normal hematopoietic genes and those of other normal cell types. ssGSEA
was then used to calculate the ISs from the immune signatures to capture
the presence of immune cells in tumor tissues. The ESTIMATE algorithm
was applied to multiple disease types from the TCGA datasets, including
LUAD and LUSC. ISs have been shown to be prognostic of outcomes,
associated with immune response and treatment response in various
cancer types such as breast cancer’, melanoma® clear cell renal cell
carcinoma®, and metastatic colorectal cancer®®. Using ESTIMATE scores,
Meng et al%” identified genes related to the regulation of immune
response of pancreatic adenocarcinoma patients. Khorrami et al. found the
positive association between the existence of TILs and response to
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immunotherapy®®. An immune scoring system surrogating for composition
of tumor and immune cells may allow prediction of response to
immunotherapy, and thereby help in identification of suitable candidates
for therapy administration. To investigate whether features prognostic of
OS were also associated with ISs, we computed the pairwise Spearman
correlation coefficients accounting for multiple statistical inferences®®
between each selected feature and IS of the patients between the
prognostic features and IS in D; and D,.

Normalized mRNA sequencing data obtained from TCGA was available
for all 421 LUAD and 438 LUSC patients in D; and D, in our study. The
dataset, consisting of 20,531 genes, was used to investigate the
underlying biological pathways associated with the prognostic features
obtained from the digitized tissue slides. First, a Spearman correlation
coefficient along with p-value was calculated between each of the
20,531 gene expression scores and the risk scores from the survival
analysis. This process resulted in genes that were significantly associated
with the risk scores derived from prognostic models. In the GO analysis
platform3'32, these genes were then used to identify biological
pathways associated with the risk scores after accounting for the false
discovery rate (FDR)® of 0.05. After obtaining the overrepresented genes
from the biological pathways, ssGSEA was performed to get the
enrichment scores. The median value of the prognostic features from
the LASSO method was used to obtain two groups of patients with low
and high expression value of the features. Wilcoxon Rank Sum Test was
then used to investigate whether there is a statistically significant
difference in the distribution of the enrichment scores in the low-high
feature value groups, after controlling for FDR®°,

Experiment 4: Association between prognostic TIL density
features and response to therapy

After applying the risk threshold obtained from the training set D,, the
patients in Dg are predicted as being at either low or high risk. In the
context of associating Cox-model predicted survival risk and the response
to therapy, a true positive is when a patient is predicted as having high-risk
and is a non-responder; a true negative is when a patient is predicted as
having low-risk and is a responder; a false positive is when a patient is
predicted as having high-risk and is a responder; a false negative is when a
patient is predicted as having low-risk and is a non-responder. The AUC
curves can then be generated based on the confusion matrix formed by
the predicted risk category and response status.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The D1 (TCGA-LUAD)?? and D2 (TCGA-LUSC)?® datasets were generated by TCGA
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