2,836 research outputs found

    Blaze-DEMGPU: Modular high performance DEM framework for the GPU architecture

    Get PDF
    AbstractBlaze-DEMGPU is a modular GPU based discrete element method (DEM) framework that supports polyhedral shaped particles. The high level performance is attributed to the light weight and Single Instruction Multiple Data (SIMD) that the GPU architecture offers. Blaze-DEMGPU offers suitable algorithms to conduct DEM simulations on the GPU and these algorithms can be extended and modified. Since a large number of scientific simulations are particle based, many of the algorithms and strategies for GPU implementation present in Blaze-DEMGPU can be applied to other fields. Blaze-DEMGPU will make it easier for new researchers to use high performance GPU computing as well as stimulate wider GPU research efforts by the DEM community

    A Novel and Fully Automated Domain Transformation Scheme for Near Optimal Surrogate Construction

    Full text link
    Recent developments in surrogate construction predominantly focused on two strategies to improve surrogate accuracy. Firstly, component-wise domain scaling informed by cross-validation. Secondly, regression to construct response surfaces using additional information in the form of additional function-values sampled from multi-fidelity models and gradients. Component-wise domain scaling reliably improves the surrogate quality at low dimensions but has been shown to suffer from high computational costs for higher dimensional problems. The second strategy, adding gradients to train surrogates, typically results in regression surrogates. Counter-intuitively, these gradient-enhanced regression-based surrogates do not exhibit improved accuracy compared to surrogates only interpolating function values. This study empirically establishes three main findings. Firstly, constructing the surrogate in poorly scaled domains is the predominant cause of deteriorating response surfaces when regressing with additional gradient information. Secondly, surrogate accuracy improves if the surrogates are constructed in a fully transformed domain, by scaling and rotating the original domain, not just simply scaling the domain. The domain transformation scheme should be based on the local curvature of the approximation surface and not its global curvature. Thirdly, the main benefit of gradient information is to efficiently determine the (near) optimal domain in which to construct the surrogate. This study proposes a foundational transformation algorithm that performs near-optimal transformations for lower dimensional problems. The algorithm consistently outperforms cross-validation-based component-wise domain scaling for higher dimensional problems. A carefully selected test problem set that varies between 2 and 16-dimensional problems is used to clearly demonstrate the three main findings of this study.Comment: 20 pages, 28 figure

    Cortical alpha activity predicts the confidence in an impending action

    Get PDF
    When we make a decision, we experience a degree of confidence that our choice may lead to a desirable outcome. Recent studies in animals have probed the subjective aspects of the choice confidence using confidence-reporting tasks. These studies showed that estimates of the choice confidence substantially modulate neural activity in multiple regions of the brain. Building on these findings, we investigated the neural representation of the confidence in a choice in humans who explicitly reported the confidence in their choice. Subjects performed a perceptual decision task in which they decided between choosing a button press or a saccade while we recorded EEG activity. Following each choice, subjects indicated whether they were sure or unsure about the choice. We found that alpha activity strongly encodes a subject's confidence level in a forthcoming button press choice. The neural effect of the subjects' confidence was independent of the reaction time and independent of the sensory input modeled as a decision variable. Furthermore, the effect is not due to a general cognitive state, such as reward expectation, because the effect was specifically observed during button press choices and not during saccade choices. The neural effect of the confidence in the ensuing button press choice was strong enough that we could predict, from independent single trial neural signals, whether a subject was going to be sure or unsure of an ensuing button press choice. In sum, alpha activity in human cortex provides a window into the commitment to make a hand movement

    Integration of chemical looping combustion for cost-effective CO2 capture from state-of-the-art natural gas combined cycles

    Get PDF
    Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant, however, CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor, the energy penalty amounts to 11.4%-points, causing a high CO2 avoidance cost of 117.3/ton,whichismoreexpensivethanaconventionalNGCCplantwithpostcombustioncapture(117.3/ton, which is more expensive than a conventional NGCC plant with post-combustion capture (93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas, a standard gas turbine can be deployed, and CO2 avoidance costs are reduced to 60.3/ton,mainlyduetoareductionintheenergypenaltytoonly1.460.3/ton, mainly due to a reduction in the energy penalty to only 1.4%-points. However, due to the added natural gas combustion after the CLC reactor, CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead, increasing the CO2 avoidance cost to 96.3/ton when a hydrogen cost of 15.5/GJisassumed.AdvancedheatintegrationcouldreducetheCO2avoidancecostto15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to 90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is, therefore, to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels

    Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging

    Get PDF
    AbstractIntroductionElectrocorticographic (ECoG) grids are placed subdurally on the cortex in people undergoing cortical resection to delineate eloquent cortex. ECoG signals have high spatial and temporal resolution and thus can be valuable for neuroscientific research. The value of these data is highest when they can be related to the cortical anatomy. Existing methods that establish this relationship rely either on post-implantation imaging using computed tomography (CT), magnetic resonance imaging (MRI) or X-Rays, or on intra-operative photographs. For research purposes, it is desirable to localize ECoG electrodes on the brain anatomy even when post-operative imaging is not available or when intra-operative photographs do not readily identify anatomical landmarks.MethodsWe developed a method to co-register ECoG electrodes to the underlying cortical anatomy using only a pre-operative MRI, a clinical neuronavigation device (such as BrainLab VectorVision), and fiducial markers. To validate our technique, we compared our results to data collected from six subjects who also had post-grid implantation imaging available. We compared the electrode coordinates obtained by our fiducial-based method to those obtained using existing methods, which are based on co-registering pre- and post-grid implantation images.ResultsOur fiducial-based method agreed with the MRI–CT method to within an average of 8.24mm (mean, median=7.10mm) across 6 subjects in 3 dimensions. It showed an average discrepancy of 2.7mm when compared to the results of the intra-operative photograph method in a 2D coordinate system. As this method does not require post-operative imaging such as CTs, our technique should prove useful for research in intra-operative single-stage surgery scenarios.To demonstrate the use of our method, we applied our method during real-time mapping of eloquent cortex during a single-stage surgery. The results demonstrated that our method can be applied intra-operatively in the absence of post-operative imaging to acquire ECoG signals that can be valuable for neuroscientific investigations

    Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    Get PDF
    Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the photoelectron signal and an induction time prior to excited state depopulation in dynamics simulations. As a benchmark molecule, we have chosen hexamethylcyclopentadiene, which shows an unprecedentedly large spectral delay of (310 \ub1 20) fs in TRPES experiments. For the dynamics simulations, methyl groups were replaced by "hydrogen atoms" having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 \ub1 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close connection between the two phenomena could be elucidated, allowing for a comparison with other polyenes and supporting the general validity of this finding for their excited state dynamics. Thus, the combination of TRPES and AIMS proves to be a powerful tool for a thorough understanding of ultrafast excited state dynamics in polyenes.Peer reviewed: YesNRC publication: Ye

    Wind power variability and power system reserves in South Africa

    Get PDF
    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power system. The study uses a scenario for wind power development in South Africa, based on information from the South African transmission system operator (Eskom) and the Department of Energy. The scenario foresees 5% wind power penetration by 2025. Time series for wind power production and forecasts are simulated, and the duration curves for wind power ramp rates and wind power forecast errors are applied to assess the use of reserves due to wind power variability. The main finding is that the 5% wind power penetration in 2025 will increase the use of short-term automatic reserves by approximately 2%
    corecore