View metadata, citation and similar papers at core.ac.uk

®

CrossMark

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

SoftwareX 5 (2016) 62-66

-

P
brought to you by .. CORE

provided by Elsevier - Publisher Connector

SoftwareX

www.elsevier.com/locate/softx

Blaze-DEMGPU: Modular high performance DEM framework for the GPU
architecture

Nicolin Govender®*, Daniel N. Wilkeb, Schalk Kok"

4 CSIR, Center for High Performance Computing, Rosebank, Cape Town, 7700, South Africa
b University of Pretoria, Department of Mechanical and Aeronautical Engineering, Pretoria, 0086, South Africa

Received 6 December 2015; received in revised form 13 April 2016; accepted 15 April 2016

Abstract

Blaze-DEMGPU is a modular GPU based discrete element method (DEM) framework that supports polyhedral shaped particles. The high
level performance is attributed to the light weight and Single Instruction Multiple Data (SIMD) that the GPU architecture offers. Blaze-DEMGPU

offers suitable algorithms to conduct DEM simulations on the GPU and these algorithms can be extended and modified. Since a large number of

scientific simulations are particle based, many of the algorithms and strategies for GPU implementation present in Blaze-DEMGPU can be applied
to other fields. Blaze-DEMGPU will make it easier for new researchers to use high performance GPU computing as well as stimulate wider GPU

research efforts by the DEM community.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: DEM; GPU; Polyhedra; Particle transport

Code metadata

Code metadata description

Current code version

Permanent link to code/repository used for this code version
Legal Code License

Code versioning system used

Software code languages, tools, and services used
Compilation requirements, operating environments &
dependencies

If available Link to developer documentation/manual
Support email for questions

v 02-2015

https://github.com/ElsevierSoftware X/SOFTX-D-15-00085
BSD license

git

C++

NVIDIA CUDA version 6.0 or higher [11] and Python 2.7

https://github.com/ElsevierSoftware X/SOFTX-D-15-00085
nico.wilke @up.ac.za, wilkedn @ gmail.com

1. Introduction

The discrete element method (DEM) [1] is becoming
widely accepted as an effective method to address engineering

* Corresponding author.
E-mail address: govender.nicolin@ gmail.com (N. Govender).

http://dx.doi.org/10.1016/j.s0ftx.2016.04.004

problems involving granular and discontinuous materials. Ap-
plications where DEM excels include granular flows, powder
mechanics and rock mechanics. DEM simulates particle motion
by including rotational degrees-of-freedom, contact and com-
plicated geometries. In our case, complicated geometries are
described by polyhedra.

DEM is computationally intensive, which limits either the
number of particles or the duration of the physical event to be

2352-7110/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



https://core.ac.uk/display/81924845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2016.04.004&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2016.04.004
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00085
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00085
mailto:govender.nicolin@gmail.com
http://dx.doi.org/10.1016/j.softx.2016.04.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

N. Govender et al. / SoftwareX 5 (2016) 62-66 63

simulated. Recent advances in numerical algorithms for nearest
neighbor searching have made it possible to simulate larger
number of particles on mainly multi-core central processing
unit (CPU) architectures. The CPU architecture limits the
potential to further increase the number of particles to be
simulated, due to the limited number (typically 8-16) of high
performance computing cores [2—4]. Several DEM codes take
advantage of modern parallel processing capabilities through
shared or distributed systems.

A modern addition to the spectrum of parallel processing
capabilities is the graphical processing unit (GPU). The GPU
is unlike shared and distributed parallel systems that often only
require minor changes or additions to single core codes. While
little additional effort is required to port parallel codes to the
GPU, such an implementation is in most cases slower than the
CPU due to the memory transaction costs on the GPU and sig-
nificantly larger parallel computation that is required to take
advantage of the larger number of cores on the GPU. This lim-
itation requires a fundamental rethink to implement DEM effi-
ciently, such that it scales well with the number of computing
cores on single and multiple GPU setups. A significant benefit
of the NVIDA-GPU architecture is that the same code will scale
on low end GPUs with a few hundred cores to high end GPUs
with thousands of cores, this also makes the code scale with
multiple GPUs on clusters. Algorithm development also has to
take into account that the GPU is a memory restricted device
with various levels of memory executing at different speeds.
This paper outlines BLAZE-DEMGPU, our modular DEM frame-
work for the GPU computing architecture [5]. This framework
is designed to be easily extended in terms of base capability and
functionality. This makes the GPU architecture easily accessi-
ble and freely available to the DEM community.

2. Discrete element theory

The linear momentum of particle i in three dimensional
space is

L =m;v;, (1)

with m; and v; the mass and the velocity of the center of mass
of particle i respectively. The angular momentum of particle i
in three dimensional space is given by

H =TI w;, (2)

where I; is the inertia tensor and ; is the angular velocity
vector. Given all forces f; that act on particle i, the problem
is reduced to integrating the change in linear momentum

d’pi

i =fi 3
and integrating the change in angular momentum about the
center of mass for an axis fixed to the body (Euler’s moment

equation),

Lizm

. dw;
HGin%—I-wXH:ti. (€]

After integration, we have the particle’s position, velocity, ac-
celeration, angular position, angular velocity and angular accel-
eration. Here, p; is the position of the center of mass of particle
i.fi = Y f° + Y f? consists of the surface tractions f?, and
body forces fib . The moments t; = r; x ff, with r; the position
vector from the center of mass to the surface force vector. Since
we only consider short-ranged interactions, this allows us to re-
solve forces solely through contact. Hence, the surface tractions
on particle i are the result of contact with other particles, con-
tact with the boundary of the domain or applied external loads.
The benefit of this restriction is that we can resolve interaction
pairs solely through nearest neighbor searches.

2.1. Broad and narrow phase contact resolution

Broad phase contact is resolved through nearest neighbor
searches on a collision detection grid. The grid size is dictated
by the size of the largest particle in the computing domain.
The grid position is stored as a single integer using a hashing
function. Hash values that are numerically close to each other
indicate grid positions that are close to each other. This
significantly improves the efficiency of searching for potential
contact with nearest neighbors [6].

When two particles i and j have been identified as poten-
tially being in contact during the broad phase, we enter the
narrow contact resolution phase. Here, it is established
whether actual contact has been made by considering whether
vertex—face, face—face or edge—edge contact has been made.
This determination is based on whether the intersection volume
of particle i and particle j is greater than zero [6].

2.2. Normal contact force laws

Once contact between two particles i and j has been estab-
lished we need to resolve the interaction forces through consti-
tutive relations. A contact distance §;; and contact normal n;;
can then be established. In addition the velocity §; ; with which
the contact distance changes can also be estimated. We imple-
mented the simplest constitutive relationship which is a linear
repulsive force and linear dissipative force model, given by

[l = k8ij + vodij. (5)

Here, k (N/m) is the normal contact stiffness and y (Ns/m) is
the normal contact damping between two particles.

2.3. Tangential contact force laws

In this framework we only consider friction resistance due
to sliding. Friction resistance as a result of sliding is due to the
relative tangential surface velocity vf 7 between two particles i
and j at contact

t
Vi =Vij — mij(nij - vij), (6)

which depends on the relative surface velocity v;; between
particles and the contact normal n;;. The relative surface
velocity at the point of contact is due to the relative translation



64 N. Govender et al. / SoftwareX 5 (2016) 62-66

(a) Stack falling under gravity.

(b) Silo discharge.

(c) Ball mill.

Fig. 1. Practical example simulations included in the BLAZE-DEMGPU distribution using (a) polyhedral or (b)—(c) spherical particles.

and rotation of the two particles
Vij =V —Vj+ri Xw+rj X o, (7

with ry the vector from the center of mass to the contact point
and ey the angular velocity of particle k, k = i, j. The relative
tangential surface velocity v’ ; in addition to Coulomb’s law dic-
tates the tangential force f' with direction such that it opposes
the motion of the two particles. Numerical time integration is
based on the classical forward Euler time integration scheme.
The integration scheme can easily be extended to other integra-
tion schemes such as the class of Verlet algorithms [7].

3. Simulation capabilities

The BLAZE-DEMGPU framework is able to simulate poly-
hedral and spherical shaped particles as depicted in Fig-
ures (a)—(c). Polyhedra with up to 32 vertices can be included. A
particle size aspect ratio of 4:1 can be handled, without signif-
icant performance degradation. Although a larger particle size
distribution is possible, the computational benefit of the broad
phase collision detection diminishes. The simulations are con-
ducted using single precision arithmetic on the GPU, which
limits the range of values in a single calculation to <1 x 1079,

A simulation is constructed from three types of physical
objects namely volume objects, surface objects and particle
objects. Volume and surface objects can be stationary or may
translate and rotate relative to the broad phase contact grid but
are not considered in estimating the grid size. Particle objects
move relative to the broad phase grid and are considered in
estimating the size of the broad phase contact grid as we only
grid the regions containing particles to improve efficiency and
allow for large geometries to be simulated.

All physical objects are stored in constant memory (48kB)
on the GPU, which is the fastest memory available with the
lowest latency when reads are collapsed. The computational
requirements for a float are 4 bytes. The vertices, edge pairs,
face normals, face areas and centroid of the object are computed
and stored for each object. Note: vertices are specified the
Cartesian origin in the positive quadrant. For each type of
particle object the moment of inertia tensor in the unrotated
configuration is also stored. The moment of inertia tensor in
the current configuration is then computed by pre and post
multiplication of the proper orthogonal rotation matrix.

The memory requirements for the objects are 12 bytes per
vertex, 12 bytes per centroid, 12 bytes per face normal, 4 bytes
per edge pair, 4 bytes per face area and 24 bytes per inertia
tensor as only the symmetric part of the inertia tensor is stored.
It is possible to extend the storage of objects to the larger global
memory (2 GB-24 GB) by sacrificing computational efficiency,
since the global memory is about 100x that of the constant
memory which we currently store the geometry.

Fig. 1 illustrates the basic simulation types possible with
the code. Fig. 1(a) is a gravity deposition of particles in a
box, which is commonly used during filling or simulation of
dam breaks etc. It is also typically used for benchmarking
as demonstrated in Table 1. Fig. 1(b) is a silo which is a
common device used in industry for storage and dispensation
of particulate materials. Fig. 1(c) is a ball mill that is used
for the crushing and grinding of product in the mineral/mining
processing industries.

The parallel computational efficiency of the BLAZE-DEM
framework on the GPU architecture allows us to create
simulations that are closer to reality by increasing the number
of particles and shape complexity we can simulate in a shorter
time frame as depicted in Table 1.

Fig. 2(a) shows the benefits of Blaze-DEM in terms of
increasing the number of particles in a simulation. We see that
current DEM simulations did not correctly capture the behavior
of what was being simulated, while Blaze-DEM gives a very
good match to what is seen in reality [12,14]. Fig. 2(b) shows
the effect of particle shape, a major problem in silo flow is that
of arching where flow stops or is non-smooth, we see that using
spheres a smooth flow is predicted while the polyhedra exhibit
the arching behavior observed in reality.

3.1. Impact

BLAZE-DEMGPU has been validated extensively against
experimental results and traditional CPU DEM codes [5,6,14,
15]. In [12,14] we applied the code to industrial ball mill and
silo simulations respectively. The results obtained were in good
agreement to experiment. More importantly simulations with
increased number of particles revealed that in some cases like
Fig. 2(a) the lack of particles in existing DEM simulations
yielded results that are not correct. Hence using the code DEM
can be used as an effective tool for the prediction of many



N. Govender et al. / SoftwareX 5 (2016) 62-66 65

Table 1
Comparison to other codes for gravity stacking simulation.

Author Shape Physics fidelity N particles C number
Harida et al. [8] Clumped Low 1.64 x 10* 0.66 x 10°
Longmore et al. [9] Clumped High 2.56 x 10° 1.49 x 100
Radake et al. [10] *Sphere High 20 x 100 20 x 106
Nvidia SDK (2014) [11] *Sphere Low 25 % 10° 125 x 106
BLAZE-DEM [12] #Sphere High 60 x 10° 100 x 100
Note: No published GPU/CPU parallel polyhedra codes Compute time (N =5 x 10%)
BLOCKS [13] Poly“Pt Highest 5x 103 186 days
iDEM [13] PolyP* Low 5x10° 2.8 days
BLAZE-DEM [6] PolysP! High 32 x 10° 32 min

b Spheres Polyhedra

Current DEM code max
Particles ~ 1 million

BLAZE-DEM max
Particles ~ 100 million

A \

kﬁ"’w‘\ AR
oS

.kgwh\

xm. u\'\ ¥

N '{-\';\'

Fig. 2. Benefits of BLAZE-DEMGPU (a) particle number (b) particle size.

industrial particle flow problems. The generality of the collision
detection methods can be applied to numerous fields as it is
a commonly encountered computational problem. Furthermore
our strategies for the GPU have been applied in areas outside
DEM [16,17].

4. Software dependencies

BLAZE-DEM is free software distributed under the BSD
license, which allows for forking into commercial applications.
It requires NVIDIA CUDA version 6.0 or higher [11] and
Python 2.7. Portability is assured by using only these two
computing platforms, which are freely available on Windows,
MacOS and Linux, in addition to the source code of the entire
framework. Hardware is limited to NVIDIA GPU cards that
support at least CUDA compute capability 3.0. In addition,
we supply a Python module that generates the geometric
information for a polyhedral particle object. Specifically, given
the particle vertices the module computes the inertia tensor
and center of mass of the particle. BLAZE-DEM commits are
subject to mandatory code review and automatic unit testing
before it is added to the public git repository (available via
git clone https://github.com/ElsevierSoftwareX/SOFTX-D-15-
00085).

5. Software framework
The interaction between the hardware and user specified

simulation data with the code architecture is outlined in Fig. 3.
Additional details are available in the developer’s guide.

GPU Hardware ]

( KSimulationData.cpp H
[ KHost.cpp H
Kernels_Compute.cuh

( CD _BroadPhase.cuh }—’[ Collision Response.cuh J<—{

—
CD_Spheres.cuh

KDevice.cpp )—»[
!

Devicelnterface.cu )

Objects & Physics ]

CD_Polyhedra.cuh

Fig. 3. Outline of the BLAZE-DEM developer overview. Note that
“Collision_Detection” is abbreviated to CD.

6. Conclusions

In this paper we presented the modular GPU-based DEM
framework BLAZE-DEMGPU that supports polyhedral shaped
particles as well as large scale spherical particles. It is
envisioned that this framework will make high performance
GPU architecture based DEM simulations easily accessible and
that it will stimulate wider GPU research efforts in the DEM
community.

References

[1] Cundall P. Strack. A discrete numerical model for granular assemblies.
Geotechnique 1979;29:47-65.

[2] Boon C, Houlsby G, Utili S. A new algorithm for contact detection
between convex polygonal and polyhedral particles in the discrete element
method. Comput Geotech 2012;44:73-82.

[3] Zhao D, Nezami E, Hashash Y, Ghaboussi J. Three-dimensional
discrete element simulation for granular materials. Computer-Aided Eng.
Comput.: Internat. J. Eng. Softw. 2006;23:749-70.


http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref1
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref2
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref3

66 N. Govender et al. / SoftwareX 5 (2016) 62-66

[4] Walther JH, Sbalzarini F. Large-scale parallel discrete element
simulations of granular flow. Eng. Comput. 2009;26:688-97.

[5]1 Govender N, Wilke D, Kok S, Els R. Development of a convex polyhedral
discrete element simulation framework for NVIDIA Kepler based GPUs.

JCAM 2014;270:63-77.
[6] Govender N, Wilke D, Kok S. Collision detection of convex polyhedra on

the NVIDIA GPU architecture for the discrete element method, J. Appl.
Math. Comput. http://dx.doi.org/10.1016/j.amc.2014.10.013.

[71 Verlet L. Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Phys Rev 1967;159:98-103.

[8] Harada T. GPU Gems 3: Real-time rigid body simulation on GPUs, Vol. 3.

2008.
[9] Longmore J, Marais P, Kuttel M. Towards realistic and interactive

sand simulation: A GPU-based framework. Powder Technol. 2013;235:

983-1000.
[10] Neubauer G, Radek CA. GPU based particle simulation framework with

fluid coupling ability, NVIDIA GTC 2014, San Jose, USA, 2014.
[11] NVIDIA, Cuda 6 (May 2014). http://www.nvidia.com/cuda.

[12] Govender N, Rajamani R, Wilke D, Kok S. Discrete element simulation
of mill charge in 3d using the blaze-dem gpu framework., J. Miner. Eng.
http://dx.doi.org/10.1016/j.mineng.2015.05.010.

[13] Jaelee S. Developments in large scale discrete element with polyhedral
particles simulations. (Ph.D. thesis) University of Illinois at Urbana-
Champaign; 2014. www.uiuc.edu.

[14] Govender N, Pizette P, Wilke D, Abriak N. Validation of the GPU based
Blaze-DEM framework for hopper discharge. In: Proceedings of the
international conference on particle-based methods 2015 Spain, 2015.

[15] Govender N, Wilke D, Kok S. A GPU based polyhedral particle DEM
transport code, NVIDIA GTC 2014, San Jose, USA, 2014. http://on-
demand.gputechconf.com/gtc/2014/poster/pdf/P4126.

[16] Mei G, et al. A generic paradigm for accelerating laplacian-based mesh
smoothing on the gpu. Arab J Sci Eng 2014;39:7907-21.

[17] Mei G, Tian H. Performance impact of data layout on the GPU-accelerated
IDW interpolation, Vol. 5. Springerplus. 2014. p. 104-9.


http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref4
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref5
http://dx.doi.org/10.1016/j.amc.2014.10.013
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref7
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref8
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref9
http://www.nvidia.com/cuda
http://dx.doi.org/10.1016/j.mineng.2015.05.010
http://www.uiuc.edu
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref16
http://refhub.elsevier.com/S2352-7110(16)30005-X/sbref17

	Blaze-DEMGPU: Modular high performance DEM framework for the GPU architecture
	Introduction
	Discrete element theory
	Broad and narrow phase contact resolution
	Normal contact force laws
	Tangential contact force laws

	Simulation capabilities
	Impact

	Software dependencies
	Software framework
	Conclusions
	References


