11 research outputs found

    Functional analysis of novel variants identified in cis in the PCCB gene in a patient with propionic acidemia

    Full text link
    Next-generation sequencing has improved the diagnosis of inborn errors of metabolism, allowing rapid confirmation of cases detected by clinical/biochemical studies or newborn screening. The challenge, however, remains for establishing the pathogenicity of the identified variants, especially for novel missense changes or small in-frame deletions. In this work we report a propionic acidemia patient exhibiting a severe neonatal form with coma and hyperammonaemia. Genetic analysis identified the previously described pathogenic PCCB variant p.R512C in the maternal allele and two novel PCCB variants in cis in the paternal allele, p.G246del and p.S322F. Expression analysis in a eukaryotic system confirmed the deleterious effect of the novel missense variant and of the one amino acid deletion, as they both exhibited reduced protein levels and reduced or null PCC activity compared to the wild-type construct. Accordingly, the double mutant resulted in no residual activity. This study increases the knowledge of the genotype-phenotype correlations in the rare disease propionic acidemia and highlights the necessity of functional analysis of novel variants to understand their contribution to disease severity and to accurately classify their pathogenic status. In conclusion, two novel PCCB pathogenic variants have been identified, expanding the current mutational spectrum of propionic acidemiaPID2019-105344RB-I00, PID2022-137238OB-I0

    AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis

    No full text
    With the dramatic increase of pangenomic analysis, Human geneticists have generated large amount of genomic data including millions of small variants (SNV/indel) but also thousands of structural variations (SV) mainly from next-generation sequencing and array-based techniques. While the identification of the complete SV repertoire of a patient is getting possible, the interpretation of each SV remains challenging. To help identifying human pathogenic SV, we have developed a web server dedicated to their annotation and ranking (AnnotSV) as well as their visualization and interpretation (knotAnnotSV) freely available at the following address: https://www.lbgi.fr/AnnotSV/. A large amount of annotations from >20 sources is integrated in our web server including among others genes, haploinsufficiency, triplosensitivity, regulatory elements, known pathogenic or benign genomic regions, phenotypic data. An ACMG/ClinGen compliant prioritization module allows the scoring and the ranking of SV into 5 SV classes from pathogenic to benign. Finally, the visualization interface displays the annotated SV in an interactive way including popups, search fields, filtering options, advanced colouring to highlight pathogenic SV and hyperlinks to the UCSC genome browser or other public databases. This web server is designed for diagnostic and research analysis by providing important resources to the user

    Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy

    Get PDF
    International audienceThe purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated

    Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study

    No full text
    BACKGROUND: Despite recent progress in the field of genetics, sporadic late-onset (> 40 years) cerebellar ataxia (SLOCA) etiology remains frequently elusive, while the optimal diagnostic workup still needs to be determined. We aimed to comprehensively describe the causes of SLOCA and to discuss the relevance of the investigations. METHODS: We included 205 consecutive patients with SLOCA seen in our referral center. Patients were prospectively investigated using exhaustive clinical assessment, biochemical, genetic, electrophysiological, and imaging explorations. RESULTS: We established a diagnosis in 135 (66%) patients and reported 26 different causes for SLOCA, the most frequent being multiple system atrophy cerebellar type (MSA-C) (41%). Fifty-one patients (25%) had various causes of SLOCA including immune-mediated diseases such as multiple sclerosis or anti-GAD antibody-mediated ataxia; and other causes, such as alcoholic cerebellar degeneration, superficial siderosis, or Creutzfeldt-Jakob disease. We also identified 11 genetic causes in 20 patients, including SPG7 (n = 4), RFC1-associated CANVAS (n = 3), SLC20A2 (n = 3), very-late-onset Friedreich's ataxia (n = 2), FXTAS (n = 2), SCA3 (n = 1), SCA17 (n = 1), DRPLA (n = 1), MYORG (n = 1), MELAS (n = 1), and a mitochondriopathy (n = 1) that were less severe than MSA-C (p < 0.001). Remaining patients (34%) had idiopathic late-onset cerebellar ataxia which was less severe than MSA-C (p < 0.01). CONCLUSION: Our prospective study provides an exhaustive picture of the etiology of SLOCA and clues regarding yield of investigations and diagnostic workup. Based on our observations, we established a diagnostic algorithm for SLOCA

    Am J Med Genet A

    No full text
    A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene

    10q26 deletion syndrome: a French cohort study

    No full text
    International audience10q26 deletion syndrome (OMIM #609625) is a rare autosomal dominant genetic disorder with about 100 patients reported. Most cases are sporadic. Global development delay, short stature, microcephaly and typical facial appearance with triangular face, large forehead, low-set malformed ears, hypertelorism, prominent nose and a thin vermilion of the upper lip constitute the main clinical features. The clinical spectrum is very heterogeneous and neurobehavioral manifestations, deafness, limb malformations, cardiac and urogenital abnormalities can be associated. Thus, patients with 10q26 chromosomal deletion need multidisciplinary management strategies from birth. One of the main reasons for this heterogeneity is the variety of 10qter region chromosomal deletions summarized into the “10q26 deletion syndrome”. Various studies proposed critical regions to explain the main phenotype (Yatzenko et al., 2009; Choucair et al., 2015; Lin S et al., 2016) or more specific features (Vera-Carbonell et al., 2015; Choucair et al., 2015). In addition, these studies proposed about 20 genes of interest such as DOCK1 and FGFR2 to explain the different clinical features observed. We report a French ACLF cohort of 35 patients from 9 centers presenting 10q26 complete or partial deletions (size: 64kb to 12.5Mb), complex chromosomal rearrangement and derivative chromosomes diagnosed using DNA-array, to bring a further insight of the genotype/phenotype correlation
    corecore