79 research outputs found

    Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model

    Full text link
    Introduction Epigallocatechin 3-gallate (EGCG), a polyphenol present in green tea, was shown to exert chondroprotective effects in vitro. In this study, we used a posttraumatic osteoarthritis (OA) mouse model to test whether EGCG could slow the progression of OA and relieve OA-associated pain. Methods C57BL/6 mice were subjected to surgical destabilization of the medial meniscus (DMM) or sham surgery. EGCG (25 mg/kg) or vehicle control was administered daily for 4 or 8 weeks by intraperitoneal injection starting on the day of surgery. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical analysis to detect cleaved aggrecan and type II collagen and expression of proteolytic enzymes matrix metalloproteinase 13 (MMP-13) and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Real-time PCR was performed to characterize the expression of genes critical for articular cartilage homeostasis. During the course of the experiments, tactile sensitivity testing (von Frey test) and open-field assays were used to evaluate pain behaviors associated with OA, and expression of pain expression markers and inflammatory cytokines in the dorsal root ganglion (DRG) was determined by real-time PCR. Results Four and eight weeks after DMM surgery, the cartilage in EGCG-treated mice exhibited less Safranin O loss and cartilage erosion, as well as lower OARSI scores compared to vehicle-treated controls, which was associated with reduced staining for aggrecan and type II collagen cleavage epitopes, and reduced staining for MMP-13 and ADAMTS5 in the articular cartilage. Articular cartilage in the EGCG-treated mice also exhibited reduced levels of Mmp1, Mmp3, Mmp8, Mmp13,Adamts5, interleukin 1 beta (Il1b) and tumor necrosis factor alpha (Tnfa) mRNA and elevated gene expression of the MMP regulator Cbp/p300 interacting transactivator 2 (Cited2). Compared to vehicle controls, mice treated with EGCG exhibited reduced OA-associated pain, as indicated by higher locomotor behavior (that is, distance traveled). Moreover, expression of the chemokine receptor Ccr2 and proinflammatory cytokines Il1b and Tnfa in the DRG were significantly reduced to levels similar to those of sham-operated animals. Conclusions This study provides the first evidence in an OA animal model that EGCG significantly slows OA disease progression and exerts a palliative effect. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0508-y) contains supplementary material, which is available to authorized users

    Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    Get PDF
    States of growth hormone (GH) resistance, such those observed in Laron dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout [GHRKO]) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKO-HIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1, allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron syndrome does not achieve full skeletal growth.Fil: Wu, Yingjie. University Of New York; Estados UnidosFil: Sun, Hui. University Of New York; Estados UnidosFil: Basta Pljakic, Jelena. City College of New York; Estados UnidosFil: Cardoso, Luis. City College of New York; Estados UnidosFil: Kennedy, Oran D.. City College of New York; Estados UnidosFil: Jasper, Hector Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas; ArgentinaFil: Domene, Horacio Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas; ArgentinaFil: Karabatas, Liliana Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas; ArgentinaFil: Guida, María Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas; ArgentinaFil: Schaffler, Mitchell B.. City College of New York; Estados UnidosFil: Rosen, Clifford J.. Maine Medical Center Research Institute; Estados UnidosFil: Yakar, Shoshana. University Of New York; Estados Unido

    Reductions in serum IGF-1 during aging impair health span

    Full text link
    In lower or simple species, such as worms and flies, disruption of the insulin-like growth factor (IGF)-1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF-1 levels in serum and tissues and can modulate lifespan via/or independent of IGF- 1. Rodent models, where the GH/IGF-1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF-1 levels are high throughout life, in humans, serum IGF-1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/ IGF-1 axis are unable to clearly distinguish between developmental and age-related effects of GH/IGF-1 on health. To overcome this caveat, we developed an inducible liver IGF-1- deficient (iLID) mouse that allows temporal control of serum IGF- 1. Deletion of liver Igf -1 gene at one year of age reduced serum IGF-1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF-1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF-1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF-1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology

    A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation

    Full text link
    Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long-term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half-lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE-58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE-58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long-term bone loss. Bone microarchitecture, histomorphometry, and whole-bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post-treatment. NE-58025 and RIS inhibited long-term OVX-induced bone loss, but NE-58025 antiresorptive effects were more pronounced. Withdrawing NE-58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE-58025 prevents OVX-induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low-HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long-term BP treatment

    BMP-12 Treatment of Adult Mesenchymal Stem Cells In Vitro Augments Tendon-Like Tissue Formation and Defect Repair In Vivo

    Get PDF
    We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further 12-hour period had no additional effect. Colony formation assays revealed that ∼80% of treated cells and their progeny were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12 in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon reconstruction or tissue engineering

    Growth Hormone Protects Against Ovariectomy-Induced Bone Loss in States of Low Circulating Insulin-like Growth Factor (IGF-1)*

    Get PDF
    Early after estrogen loss in postmenopausal women and ovariectomy (OVX) of animals, accelerated endosteal bone resorption leads to marrow expansion of long bone shafts that reduce mechanical integrity. Both growth hormone (GH) and insulin-like growth factor (IGF-1) are potent regulators of bone remodeling processes. To investigate the role of the GH/IGF-1 axis with estrogen deficiency, we used the liver IGF-1-deficient (LID) mouse. Contrary to deficits in controls, OVX of LID mice resulted in maintenance of cortical bone mechanical integrity primarily owing to an enhanced periosteal expansion affect on cross-sectional structure (total area and cortical width). The serum balance in LID that favors GH over IGF-1 diminished the effects of ablated ovarian function on numbers of osteoclast precursors in the marrow and viability of osteocytes within the cortical matrix and led to less endosteal resorption in addition to greater periosteal bone formation. Interactions between estrogen and the GH/IGF-1 system as related to bone remodeling provide a pathway to minimize degeneration of bone tissue structure and osteoporotic fracture. © 2010 American Society for Bone and Mineral Researc

    Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    Get PDF
    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 ± 1.1%, mean ± SEM) and hip/thigh region (1.2 ± 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering

    In Vivo Evaluation of the Presence of Bone Marrow in Cortical Porosity in Postmenopausal Osteopenic Women

    Get PDF
    This is the first observational study examining cortical porosity in vivo in postmenopausal osteopenic women and to incorporate data from two different imaging modalities to further examine the nature of cortical porosity. The goal of this study was to combine high-resolution peripheral computed tomography (HR-pQCT) images, which contain high spatial resolution information of the cortical structure, and magnetic resonance (MR) images, which allow the visualization of soft tissues such as bone marrow, to observe the amount of cortical porosity that contains bone marrow in postmenopausal osteopenic women. The radius of 49 and the tibia of 51 postmenopausal osteopenic women (age 56 ± 3.7) were scanned using both HR-pQCT and MR imaging. A normalized mutual information registration algorithm was used to obtain a three-dimensional rigid transform which aligned the MR image to the HR-pQCT image. The aligned images allowed for the visualization of bone marrow in cortical pores. From the HR-pQCT image, the percent cortical porosity, the number of cortical pores, and the size of each cortical pore was determined. By overlaying the aligned MR and HR-pQCT images, the percent of cortical pores containing marrow, the number of cortical pores containing marrow, and the size of each cortical pore containing marrow were measured. While the amount of cortical porosity did not vary greatly between subjects, the type of cortical pore, containing marrow vs. not containing marrow, varied highly between subjects. The results suggest that cortical pore spaces contain components of varying composition, and that there may be more than one mechanism for the development of cortical porosity

    Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

    Get PDF
    The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics including self renewal and differentiation capacities and can be derived from a variety of different sources. These multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue regeneration during inflammation, tissue injuries and certain cancers
    corecore