172 research outputs found

    How to Use Common Technologies to Minimize Perceptual Biases When Grading Essays: A Five-Step Process

    Get PDF
    Evaluation of student performance is an important component of higher education course work and a major dimension of Ignatian pedagogy. However, the process of grading essay exams (a popular assessment method in both the liberal arts and technical programs) naturally brings the threat of several perceptual biases that harm grading validity and consistency. Thus, we sought a method to collect and organize essay tests to minimize identification bias (make student authors anonymous to the grader) and randomize grading order to minimize systematic error (related to always grading the same students first or last). Specifically, in this paper, we describe a step-by-step innovative approach that uses multiple common computer technologies (NetSupport School, Word, DOS, and Excel) to prepare, administer, and grade essay examinations submitted by students. Within the Appendix, we describe the steps and how to use these common tools, but within the paper, we offer general guidelines to apply our methods using whatever software or technologies schools are currently using. The discussion section presents limitations to our described method, offers ideas of modifications that may meet the same goals, and recommends future research directions

    Characterization of Singlet Ground and Low-Lying Electronic Excited States of Phosphaethyne and Isophosphaethyne

    Get PDF
    The singlet ground _X˜ 1_+_ and excited _1_− , 1__ states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations _CCSD_, CCSD with perturbative triple corrections _CCSD_T__, and CCSD with partial iterative triple excitations _CCSDT-3 and CC3_. Physical properties computed for the global minimum _X˜ 1_+HCP_ include harmonic vibrational frequencies with the cc-pV5Z CCSD_T_ method of _1=3344 cm−1, _2=689 cm−1, and _3=1298 cm−1. Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol−1 above the global minimum HCP. The dissociation energy D0_HCP_X˜ 1_+_→H_2S_+CP_X 2_+__ of HCP is predicted to be 119.0 kcal mol−1, which is very close to the experimental lower limit of 119.1 kcal mol−1. Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods _EOM-CCSD, EOM-CCSDT-3, and EOM-CC3_. Four stationary points were located on the lowest-lying excited state potential energy surface, 1_− →1A_, with excitation energies Te of 101.4 kcal mol−1_1A_ HCP_, 104.6 kcal mol−1_1_− HCP_, 122.3 kcal mol−1_1A_ HPC_, and 171.6 kcal mol−1_1_− HPC_ at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A_ state with a predicted bond angle of 129.5° compare well with the experimentally reported first singlet state _A˜ 1A__. The excitation energy predicted for this excitation is T0=99.4 kcal mol−1_34 800 cm−1 , 4.31 eV_, in essentially perfect agreement with the experimental value of T0=99.3 kcal mol−1_34 746 cm−1 ,4.308 eV_. For the second lowest-lying excited singlet surface, 1_→1A_, four stationary points were found with Te values of 111.2 kcal mol−1 _21A_ HCP_, 112.4 kcal mol−1 _1_ HPC_, 125.6 kcal mol−1_2 1A_ HCP_, and 177.8 kcal mol−1_1_ HPC_. The predicted CP bond length and frequencies of the 2 1A_ state with a bond angle of 89.8° _1.707 Å, 666 and 979 cm−1_ compare reasonably well with those for the experimentally reported C ˜ 1A_ state _1.69 Å, 615 and 969 cm−1_. However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol−1 and 89.8° versus experimental values of 115.1 kcal mol−1 and 113°

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    New Models for Large Prospective Studies: Is There a Better Way?

    Get PDF
    Large prospective cohort studies are critical for identifying etiologic factors for disease, but they require substantial long-term research investment. Such studies can be conducted as multisite consortia of academic medical centers, combinations of smaller ongoing studies, or a single large site such as a dominant regional health-care provider. Still another strategy relies upon centralized conduct of most or all aspects, recruiting through multiple temporary assessment centers. This is the approach used by a large-scale national resource in the United Kingdom known as the “UK Biobank,” which completed recruitment/examination of 503,000 participants between 2007 and 2010 within budget and ahead of schedule. A key lesson from UK Biobank and similar studies is that large studies are not simply small studies made large but, rather, require fundamentally different approaches in which “process” expertise is as important as scientific rigor. Embedding recruitment in a structure that facilitates outcome determination, utilizing comprehensive and flexible information technology, automating biospecimen processing, ensuring broad consent, and establishing essentially autonomous leadership with appropriate oversight are all critical to success. Whether and how these approaches may be transportable to the United States remain to be explored, but their success in studies such as UK Biobank makes a compelling case for such explorations to begin

    Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia

    Get PDF
    We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology

    2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Get PDF
    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections
    corecore