152 research outputs found

    The 50-100pc scale parent stellar populations of type II supernovae and limitations of single star evolution models

    Full text link
    There is observational evidence of a dearth in core-collapse supernova (ccSN) explosions from stars with zero age main sequence (ZAMS) mass M_0~17-30 Msol, referred to as the 'red supergiant problem'. However, simulations now predict that above 20Msol we should indeed only expect stars within certain pockets of M_0 to produce a visible SN explosion. Validating these predictions requires large numbers of ccSNe of different types with measured M_0, which is challenging. In this paper we explore the reliability of using host galaxy emission lines and the Halpha equivalent width to constrain the age, and thus the M_0 of ccSNe progenitors. We use Binary Population and Spectral Synthesis models to infer a stellar population age from MUSE observations of the ionised gas properties and Halpha EW at the location of eleven ccSNe with reliable M_0 measurements. Comparing our results to published M_0 values, we find that models that do not consider binary systems yield stellar ages that are systematically too young (thus M_0 too large), whereas accounting for binary system interactions typically overpredict the stellar age (thus underpredict M_0). Taking into account the effects of photon leakage bring our M_0 estimates in much closer agreement with expectations. These results highlight the need for careful modelling of diffuse environments, such as are present in the vicinity of type II SNe, before ionised emission line spectra can be used as reliable tracers of progenitor stellar age.Comment: 17 pages and 5 figures (excluding appendix). Replaced to match published version in MNRA

    Herschel observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium

    Get PDF
    Long-duration gamma-ray bursts (GRBs) are indisputably related to star formation, and their vast luminosity in gamma rays pin-points regions of star formation independent of galaxy mass. As such, GRBs provide a unique tool for studying star forming galaxies out to high-z independent of luminosity. Most of our understanding of the properties of GRB hosts (GRBHs) comes from optical and near-infrared (NIR) follow-up observations, and we therefore have relatively little knowledge of the fraction of dust-enshrouded star formation that resides within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of dust along the line of sight to the afterglow through the host galaxy, and these GRBs tend to reside within redder and more massive galaxies than GRBs with optically bright afterglows. In this paper we present Herschel observations of five GRBHs with evidence of being dust-rich, targeted to understand the dust attenuation properties within GRBs better. Despite the sensitivity of our Herschel observations, only one galaxy in our sample was detected (GRBH 070306), for which we measure a total star formation rate (SFR) of ~100Mstar/yr, and which had a relatively high stellar mass (log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample of GRBHs observed with Herschel, it is clear that stellar mass is not the only factor contributing to a Herschel detection, and significant dust extinction along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better tracer of GRBHs with high dust mass. This suggests that the extinguishing dust along the GRB line of sight lies predominantly within the host galaxy ISM, and thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel detections are likely to have been predominantly extinguished by dust within an intervening dense cloud.Comment: 14 pages, 7 figures. Accepted for publication in A&

    The 50–100 pc scale parent stellar populations of Type II supernovae and limitations of single star evolution models

    Get PDF
    There is observational evidence of a dearth in core-collapse supernova (ccSN) explosions from stars with zero-age main-sequence (ZAMS) mass M0 ≈ 17–30M, referred to as the ‘red supergiant problem’. However, simulations now predict that above 20 M we should indeed only expect stars within certain pockets of M0 to produce a visible SN explosion. Validating these predictions requires large numbers of ccSNe of different types with measured M0, which is challenging. In this paper, we explore the reliability of using host galaxy emission lines and the H α equivalent width to constrain the age, and thus the M0 of ccSNe progenitors. We use Binary Population and Spectral Synthesis models to infer a stellar population age from MUSE observations of the ionized gas properties and H α EW at the location of eleven ccSNe with reliable M0 measurements. Comparing our results to published M0 values, we find that models that do not consider binary systems yield stellar ages that are systematically too young (thus M0 too large), whereas accounting for binary system interactions typically overpredict the stellar age (thus underpredict M0). Taking into account the effects of photon leakage bring our M0 estimates in much closer agreement with expectations. These results highlight the need for careful modelling of diffuse environments, such as are present in the vicinity of Type II SNe, before ionized emission line spectra can be used as reliable tracers of progenitor stellar age. Key words: binaries: general – supernovae: general – H II regions – transients: supernovae.</p

    The Cosmic Evolution of Fermi BL Lacertae Objects

    Get PDF
    Fermi has provided the largest sample of γ-ray-selected blazars to date. In this work we use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. We find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z ≾ 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. We additionally find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor of y = 6.1^(+1.1)_(-0.8), and that most are seen within 10° of the jet axis

    The Two-Component Afterglow of Swift GRB 050802

    Full text link
    This paper investigates GRB 050802, one of the best examples of a it Swift gamma-ray burst afterglow that shows a break in the X-ray lightcurve, while the optical counterpart decays as a single power-law. This burst has an optically bright afterglow of 16.5 magnitude, detected throughout the 170-650nm spectral range of the UVOT on-board Swift. Observations began with the XRT and UVOT telescopes 286s after the initial trigger and continued for 1.2 x 10^6s. The X-ray lightcurve consists of three power-law segments: a rise until 420s, followed by a slow decay with alpha_2 = 0.63 +/- 0.03 until 5000s, after which, the lightcurve decays faster with a slope of alpha_3 = 1.59 +/- 0.03. The optical lightcurve decays as a single power-law with alpha_O = 0.82 +/- 0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow can not be produced by the same component as the X-ray emission at late times, ruling out a single component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.Comment: 13 pages, 5 figures, accepted MNRA

    Swift detects a remarkable gamma-ray burst, GRB 060614, that introduces a new classification scheme

    Get PDF
    Gamma ray bursts (GRBs) are known to come in two duration classes, separated at ~2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its ~102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.Comment: 13 pages, 2 figures, accepted in Natur

    Ultraviolet, Optical, and X-Ray Observations of the Type Ia Supernova 2005am with Swift

    Full text link
    We present ultraviolet and optical light curves in six broadband filters and grism spectra obtained by Swift's Ultraviolet/Optical Telescope for the Type Ia supernova SN2005am. The data were collected beginning about four days before the B-band maximum, with excellent coverage of the rapid decline phase and later observations extending out to 69 days after the peak. The optical and near UV light curve match well those of SN1992A. The other UV observations constitute the first set of light curves shorter than 2500 Angstroms and allow us to compare the light curve evolution in three UV bands. The UV behavior of this and other low redshift supernovae can be used to constrain theories of progenitor evolution or to interpret optical light curves of high redshift supernovae. Using Swift's X-Ray Telescope, we also report the upper limit to SN2005am's X-ray luminosity to be 1.77 x 10^40 erg s^-1 in the 0.3--10 keV range from 58,117 s of exposure time.Comment: 15 pages, including 3 figures and 2 tables, submitted to Astrophysical Journa

    NuSTAR, Swift, and GROND observations of the flaring MeV blazar: PMN J0641−0320

    Get PDF
    MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641−0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of ~1 up to ~80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641−0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus

    Swift Observations of GRB 050603: An afterglow with a steep late time decay slope

    Full text link
    We report the results of Swift observations of the Gamma Ray Burst GRB 050603. With a V magnitude V=18.2 about 10 hours after the burst the optical afterglow was the brightest so far detected by Swift and one of the brightest optical afterglows ever seen. The Burst Alert Telescope (BAT) light curves show three fast-rise-exponential-decay spikes with T90T_{90}=12s and a fluence of 7.6×106\times 10^{-6} ergs cm2^{-2} in the 15-150 keV band. With an Eγ,iso=1.26×1054E_{\rm \gamma, iso} = 1.26 \times 10^{54} ergs it was also one of the most energetic bursts of all times. The Swift spacecraft began observing of the afterglow with the narrow-field instruments about 10 hours after the detection of the burst. The burst was bright enough to be detected by the Swift UV/Optical telescope (UVOT) for almost 3 days and by the X-ray Telescope (XRT) for a week after the burst. The X-ray light curve shows a rapidly fading afterglow with a decay index α\alpha=1.760.07+0.15^{+0.15}_{-0.07}. The X-ray energy spectral index was βX\beta_{\rm X}=0.71\plm0.10 with the column density in agreement with the Galactic value. The spectral analysis does not show an obvious change in the X-ray spectral slope over time. The optical UVOT light curve decays with a slope of α\alpha=1.8\plm0.2. The steepness and the similarity of the optical and X-ray decay rates suggest that the afterglow was observed after the jet break. We estimate a jet opening angle of about 1-2^{\circ}Comment: 14 pages, accepted for publication in Ap

    The First Swift Ultra-Violet/Optical Telescope GRB Afterglow Catalog

    Full text link
    We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3-sigma-level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst is given in three UV bands, three optical bands, and a 'white' or open filter. Upper limits for magnitudes are reported for sources detected below 3-sigma. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3-sigma-level, can be fit by a single power-law, with a median temporal slope (alpha) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1x10^5 s. The median UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of "well" detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hours after the trigger.Comment: 60 pages, 17 figures, 8 tables, accepted for publication by the Astrophysical Journa
    corecore