361 research outputs found

    Modelling of signal transduction in yeast – sensitivity and model analysis

    Get PDF
    Experimental research has revealed components and mechanisms of cellular stress sensing and adaptation. In addition, mathematical modelling has proven to foster the understanding of some basic principles of signal transduction and signal processing as well as of sensitivity and robustness of information perception and cellular response. Here we review some modelling principles, results and open questions exemplified for a model organism, the yeast Saccharomyces cerevisiae

    Impact cratering and the surface age of Venus: The Pre-Magellan controversy

    Get PDF
    The average surface age of a planet is a major indicator of the level of its geologic activity and thus of the dynamics of its interior. Radar images obtained by Venera 15/16 from the northern quarter of the Venus (lat 30 to 90 degs) reveal about 150 features that resemble impact craters, and they were so interpreted by Soviet investigators B. A. Ivanov, A. T. Basilevsky, and their colleagues. These features range in diameter from about 10 to 145 km. Their areal density is remarkably similar to the density of impact structures found on the American and European continental shields. The basic difference between the Soviet and American estimates of the average surface age of Venus's northern quarter is due to which crater-production rate is used for the Venusian environment. Cratering rates based on the lunar and terrestrial cratering records, as well as statistical calculations based on observed and predicted Venus-crossing asteroids and comets, have been used in both the Soviet and American calculations. The single largest uncertainty in estimating the actual cratering rates near Venus involves the shielding effect of the atmosphere

    A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast

    Get PDF
    Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling techniques to analyse dynamic mechanisms and measures of crosstalk. We present a dynamic mathematical model that compiles current knowledge about the wiring of the pheromone pathway and the filamentous growth pathway in yeast. We consider the main dynamic features and the interconnections between the two pathways in order to study dynamic crosstalk between these two pathways in haploid cells. We introduce two new measures of dynamic crosstalk, the intrinsic specificity and the extrinsic specificity. These two measures incorporate the combined signal of several stimuli being present simultaneously and seem to be more stable than previous measures. When both pathways are responsive and stimulated, the model predicts that (a) the filamentous growth pathway amplifies the response of the pheromone pathway, and (b) the pheromone pathway inhibits the response of filamentous growth pathway in terms of mitogen activated protein kinase activity and transcriptional activity, respectively. Among several mechanisms we identified leakage of activated Ste11 as the most influential source of crosstalk. Moreover, we propose new experiments and predict their outcomes in order to test hypotheses about the mechanisms of crosstalk between the two pathways. Studying signals that are transmitted in parallel gives us new insights about how pathways and signals interact in a dynamical way, e.g., whether they amplify, inhibit, delay or accelerate each other

    Apollo experiment S-217 IR/radar study of Apollo data

    Get PDF
    An experiment using Earth based remote sensing radar, infrared eclipse, and color difference data to deduce surface properties not visible in Apollo photography is reported. The Earth based data provided information on the small scale (centimeter sized) blockiness and on the surface chemical composition (titanium and iron contents) of the lunar surface. These deduced surface properties complemented the new Apollo photography, leading to refined geologic interpretations of the lunar surface

    Magellan: Preliminary description of Venus surface geologic units

    Get PDF
    Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units

    TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis

    Get PDF
    Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neurone (MN) degeneration and death. ALS can be sporadic (sALS) or familial, with a number of associated gene mutations, including C9orf72 (C9ALS). DNA methylation is an epigenetic mechanism whereby a methyl group is attached to a cytosine (5mC), resulting in gene expression repression. 5mC can be further oxidized to 5‐hydroxymethylcytosine (5hmC). DNA methylation has been studied in other neurodegenerative diseases, but little work has been conducted in ALS. Aims To assess differences in DNA methylation in individuals with ALS and the relationship between DNA methylation and TDP43 pathology. Methods Post mortem tissue from controls, sALS cases and C9ALS cases were assessed by immunohistochemistry for 5mC and 5hmC in spinal cord, motor cortex and prefrontal cortex. LMNs were extracted from a subset of cases using laser capture microdissection. DNA from these underwent analysis using the MethylationEPIC array to determine which molecular processes were most affected. Results There were higher levels of 5mC and 5hmC in sALS and C9ALS in the residual lower motor neurones (LMNs) of the spinal cord. Importantly, in LMNs with TDP43 pathology there was less nuclear 5mC and 5hmC compared to the majority of residual LMNs that lacked TDP43 pathology. Enrichment analysis of the array data suggested RNA metabolism was particularly affected. Conclusions DNA methylation is a contributory factor in ALS LMN pathology. This is not so for glia or neocortical neurones

    Prevention of mist formation in amine based carbon capture : field testing using a Wet ElectroStatic Precipitator (WESP) and a Gas-Gas Heater (GGH)

    Get PDF
    This study presents the results of two field tests that aimed at evaluating two countermeasures (WESP and GGH) to avoid acid mist formation. A WESP is shown to be very efficient for the removal of nuclei from the flue gas (100 % efficient) and thus can prevent aerosol formation inside an amine based absorber. This is however only valid in the absence of SO2 in the flue gas entering the WESP. A decreasing WESP efficiency is noted in the presence of SO2 with increasing voltages as a result of newly formed aerosols inside the WESP. This implies that no or very low levels of SO2 should be present in the flue gas entering the WESP. Since most of the amine carbon capture installations have a pre-scrubber (usually using NaOH to remove residual SO2 in the flue gas leaving the power plant's Flue Gas Desulphurisation) in front of their amine absorber, the WESP must be installed behind this pre-scrubber and not in front of it. Having a Gas-Gas Heater (or any type of flue gas cooling such as a Low Temperature Heat Exchanger) installed upstream of the wet scrubbing may prevent homogenous nucleation and thus prevent the conversion of H2SO4 into sulfuric acid aerosols and consequently mist formation issues in the amine based carbon capture installation. Which option to choose amongst the two countermeasures presented in this study will depend on whether a new built installation is being considered or whether a carbon capture is planned as a retrofit into an existing installation. (C) 2017 The Authors. Published by Elsevier Ltd

    Prevention of Mist Formation in Amine Based Carbon Capture: Field Testing Using a Wet ElectroStatic Precipitator (WESP) and a Gas-Gas Heater (GGH)

    Get PDF
    This study presents the results of two field tests that aimed at evaluating two countermeasures (WESP and GGH) to avoid acid mist formation. A WESP is shown to be very efficient for the removal of nuclei from the flue gas (100 % efficient) and thus can prevent aerosol formation inside an amine based absorber. This is however only valid in the absence of SO2 in the flue gas entering the WESP. A decreasing WESP efficiency is noted in the presence of SO2 with increasing voltages as a result of newly formed aerosols inside the WESP. This implies that no or very low levels of SO2 should be present in the flue gas entering the WESP. Since most of the amine carbon capture installations have a pre-scrubber (usually using NaOH to remove residual SO2 in the flue gas leaving the power plant's Flue Gas Desulphurisation) in front of their amine absorber, the WESP must be installed behind this pre-scrubber and not in front of it. Having a Gas-Gas Heater (or any type of flue gas cooling such as a Low Temperature Heat Exchanger) installed upstream of the wet scrubbing may prevent homogenous nucleation and thus prevent the conversion of H2SO4 into sulfuric acid aerosols and consequently mist formation issues in the amine based carbon capture installation. Which option to choose amongst the two countermeasures presented in this study will depend on whether a new built installation is being considered or whether a carbon capture is planned as a retrofit into an existing installation. (C) 2017 The Authors. Published by Elsevier Ltd
    corecore