19 research outputs found

    Titanium and titanium oxides at the K- and L-edges: validating theoretical calculations of X-ray absorption and X-ray emission spectra with measurements

    Full text link
    Using well-calibrated experimental data we validate theoretical X-ray absorption spectroscopy (XAS) as well as X-ray emission spectroscopy (XES) calculations for titanium (Ti), titanium oxide (TiO), and titanium dioxide (TiO2_2) at the Ti K- and L-edges as well as O K-edge. XAS and XES in combination with a multi-edge approach offer a detailed insight into the electronic structure of materials since both the occupied and unoccupied states, are probed. The experimental results are compared with ab initio calculations from the OCEAN package which uses the Bethe-Salpeter equation (BSE) approach. Using the same set of input parameters for each compound for calculations at different edges, the transferability of the OCEAN calculations across different spectroscopy methods and energy ranges is validated. Thus, the broad applicability for analysing and interpreting the electronic structure of materials with the OCEAN package is shown

    a controlled multicenter study with assessment of echocardiographic reference values, and the frequency of dilatation and aneurysm in Marfan syndrome

    Get PDF
    Background Echocardiographic upper normal limits of both main pulmonary artery (MPA) diameters (MPA-d) and ratio of MPA to aortic root diameter (MPA-r) are not defined in healthy adults. Accordingly, frequency of MPA dilatation based on echocardiography remains to be assessed in adults with Marfan syndrome (MFS). Methods We enrolled 123 normal adults (72 men, 52 women aged 42 ± 14 years) and 98 patients with MFS (42 men, 56 women aged 39 ± 14 years) in a retrospective cross-sectional observational controlled study in four tertiary care centers. We defined outcome measures including upper normal limits of MPA-d and MPA-r as 95 quantile of normal persons, MPA dilatation as diameters > upper normal limits, MPA aneurysm as diameters >4 cm, and indication for surgery as MPA diameters >6 cm. Results MPA diameters revealed normal distribution without correlation to age, sex, body weight, body height, body mass index and body surface area. The upper normal limit was 2.6 cm (95% confidence interval (CI) =2.44-2.76 cm) for MPA-d, and 1.05 (95% CI = .86–1.24) for MPA-r. MPA dilatation presented in 6 normal persons (4.9%) and in 68 MFS patients (69.4%; P < .001), MPA aneurysm presented only in MFS (15 patients; 15.3%; P < .001), and no patient required surgery. Mean MPA-r were increased in MFS (P 1.05 were equally frequent in 7 normal persons (5%) and in 8 MFS patients (10.5%; P = .161). MPA-r related to aortic root diameters (P = .042), reduced left ventricular ejection fraction (P = .006), and increased pulmonary artery systolic pressures (P = .040). No clinical manifestations of MFS and no FBN1 mutation characteristics related to MPA diameters. Conclusions We established 2.6 cm for MPA-d and 1.05 for MPA-r as upper normal limits. MFS exhibits a high prevalence of MPA dilatation and aneurysm. However, patients may require MPA surgery only in scarce circumstances, most likely because formation of marked MPA aneurysm may require LV dysfunction and increased PASP

    The main pulmonary artery in adults : a controlled multicenter study with assessment of echocardiographic reference values, and the frequency of dilatation and aneurysm in Marfan syndrome

    Get PDF
    BACKGROUND: Echocardiographic upper normal limits of both main pulmonary artery (MPA) diameters (MPA-d) and ratio of MPA to aortic root diameter (MPA-r) are not defined in healthy adults. Accordingly, frequency of MPA dilatation based on echocardiography remains to be assessed in adults with Marfan syndrome (MFS). METHODS: We enrolled 123 normal adults (72 men, 52 women aged 42 ± 14 years) and 98 patients with MFS (42 men, 56 women aged 39 ± 14 years) in a retrospective cross-sectional observational controlled study in four tertiary care centers. We defined outcome measures including upper normal limits of MPA-d and MPA-r as 95 quantile of normal persons, MPA dilatation as diameters > upper normal limits, MPA aneurysm as diameters >4 cm, and indication for surgery as MPA diameters >6 cm. RESULTS: MPA diameters revealed normal distribution without correlation to age, sex, body weight, body height, body mass index and body surface area. The upper normal limit was 2.6 cm (95% confidence interval (CI) =2.44-2.76 cm) for MPA-d, and 1.05 (95% CI = .86–1.24) for MPA-r. MPA dilatation presented in 6 normal persons (4.9%) and in 68 MFS patients (69.4%; P < .001), MPA aneurysm presented only in MFS (15 patients; 15.3%; P < .001), and no patient required surgery. Mean MPA-r were increased in MFS (P < .001), but ratios >1.05 were equally frequent in 7 normal persons (5%) and in 8 MFS patients (10.5%; P = .161). MPA-r related to aortic root diameters (P = .042), reduced left ventricular ejection fraction (P = .006), and increased pulmonary artery systolic pressures (P = .040). No clinical manifestations of MFS and no FBN1 mutation characteristics related to MPA diameters. CONCLUSIONS: We established 2.6 cm for MPA-d and 1.05 for MPA-r as upper normal limits. MFS exhibits a high prevalence of MPA dilatation and aneurysm. However, patients may require MPA surgery only in scarce circumstances, most likely because formation of marked MPA aneurysm may require LV dysfunction and increased PASP

    A Plasmodium Actin-depolymerizing Factor That Binds Exclusively to Actin Monomers

    No full text
    ADF/cofilins (AC) are essential F- and G-actin binding proteins that modulate microfilament turnover. The genome of Plasmodium falciparum, the parasite causing malaria, contains two members of the AC family. Interestingly, P. falciparum ADF1 lacks the F-actin binding residues of the AC consensus. Reverse genetics in the rodent malaria model system suggest that ADF1 performs vital functions during the pathogenic red blood cell stages, whereas ADF2 is not present in these stages. We show that recombinant PfADF1 interacts with monomeric actin but does not bind to actin polymers. Although other AC proteins inhibit nucleotide exchange on monomeric actin, the Plasmodium ortholog stimulates nucleotide exchange. Thus, PfADF1 differs in its biochemical properties from previously known AC proteins and seems to promote turnover exclusively by interaction with actin monomers. These findings provide important insights into the low cytosolic abundance and unique turnover characteristics of actin polymers in parasites of the phylum Apicomplexa

    Actin regulation in the malaria parasite

    No full text
    corecore