239 research outputs found
An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine
The ability of ammonia to act as a hydrogen carrier, without the drawbacks of hydrogen gas-storage costs and low stability-renders it a potential solution to the decarbonisation of transport. This study combines both modelling and experimental techniques to determine the effect of varying the degree of aspiration of ammonium hydroxide (NH4OH) solution, at different engine loads, in the combustion of a compression ignition engine. Ignition delay was extended as ammonia injection increased, causing an increase in peak in-cylinder temperature, but generally lower combustion quality-increasing incomplete combustion products, while decreasing particle size. The higher peak in-cylinder temperatures generally correlated with a higher nitrous oxide (NOx) emissions in the exhaust, though fuel-bound nitrogen effect was apparent. Chemical kinetic modelling at equivalent conditions found increasing levels of unburnt ammonia with greater aspiration. Moreover, the ignitability of NH4OH was found to improve in simulations substituting diesel with hydrogen peroxide direct injection
Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms
Flow is an important physical driver of biofilm communities. Here, we tested the effects of the near bed flows in two mountainous stream reaches on the structure of biofilm microbial guilds (autotrophs, heterotrophic bacteria, and heterotrophic protists) within and across trophic levels. Near bed flow velocity and turbulent kinetic energy were important physical drivers for structuring the communities within and across guilds of the multitrophic fluvial biofilms. The effects of flow were nested in a seasonal and spatial (across-streams) context. Changes in physicochemical factors (temperature, light, dissolved carbon, and nutrients) along the reaches were alike in both streams suggesting that environmental boundary conditions at larger temporal scales were responsible for the seasonal differences of biofilm communities, whereas locally microbial diversity was shaped by near bed flow. Typically, the abundance of autotrophs increased with flow, indicating that biofilms shifted toward increasing autotrophy with increasing shear forces. Filamentous autotrophs seemed to provide protected habitats from the shear forces for smaller sized bacteria. Heterotrophic protist abundance decreased with flow leading to decreasing grazer to prey ratio. Bacteria thus benefitted from a reduction in grazing pressure at faster flowing, more turbulent sites. Our results suggest that near bed flow can impact the magnitude and direction of matter fluxes through the microbial food web and possibly affect ecosystem functioning of fluvial biofilms
Nonlinear Bias and the Convective Fisher Equation
We combine random walks, growth and decay, and convection, in a Monte Carlo
simulation to model 1D interface dynamics with fluctuations. The continuum
limit corresponds to the deterministic Fisher equation with convection. We find
qualitatively the same type of asymmetry, as well as velocity difference, for
interface profiles moving in opposite directions. However a transition apparent
in the mean-field (continuum) limit is not found in the Monte Carlo simulation.Comment: 2.5 pages (texed) with 4 postscript figures, TeX 3.14t
Benefits of ecological engineering practices
With the intention to further promote the field of ecological engineering and the solutions it provides, a workshop on “Benefits of Ecological Engineering Practices” was held 3 December 2009. It was conducted by the International Ecological Engineering Society in Paris at the conference “Ecological Engineering: from Concepts to Application” organized by the Ecological Engineering Applications Group GAIE. This paper presents the results of the workshop related to three key questions: (1) what are the benefits of ecological engineering practices to human and ecosystem well-being, (2) which concepts are used or useful to identify, reference, and measure the benefits of ecological engineering practices, and (3) how and to whom shall benefits of ecological engineering practices be promoted. While benefits of ecological engineering practices are diverse, general conclusions can be derived to facilitate communication. Identifying benefits requires valuation frameworks reaching beyond the scope of ecology and engineering. A distinction between human and ecosystem well-being in this regard may not be easy or useful, but instead humans embedded in ecosystems should be addressed as a whole. The concepts of resource efficiency, ecosystem services, ecosystem health, and multifunctional land use could serve as suitable references to frame ecological engineering benefits, as well as referring to international political goals such as biodiversity protection, climate change mitigation and poverty reduction. Sector and application specific criteria of good practice could be worked out. Regional, area specific reference systems for sustainable development could provide comparative advantages for ecologically engineered solutions. Besides people with high decision making power and people with high motivation for change are good target groups to be addressed
Phase ordering and shape deformation of two-phase membranes
Within a coupled-field Ginzburg-Landau model we study analytically phase
separation and accompanying shape deformation on a two-phase elastic membrane
in simple geometries such as cylinders, spheres and tori. Using an exact
periodic domain wall solution we solve for the shape and phase ordering field,
and estimate the degree of deformation of the membrane. The results are
pertinent to a preferential phase separation in regions of differing curvature
on a variety of vesicles.Comment: 4 pages, submitted to PR
Biochemistry Instructors’ Views toward Developing and Assessing Visual Literacy in Their Courses
Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students’ visual literacy. However, visual literacy has multiple aspects, and determining which area to develop can be quite daunting. Therefore, the goals of this study were to determine what visual literacy skills biochemistry instructors deem to be most important and how instructors develop and assess visual literacy skills in their biochemistry courses. In order to address these goals, a needs assessment was administered to a national sample of biochemistry faculty at four-year colleges and universities. Based on the results of the survey, a cluster analysis was conducted to group instructors into categories based on how they intended to develop visual literacy in their courses. A misalignment was found between the visual literacy skills that were most important and how instructors developed visual literacy. In addition, the majority of instructors assumed these skills on assessments rather than explicitly testing them. Implications focus on the need for better measures to assess visual literacy skills directly
A Closest Point Proposal for MCMC-based Probabilistic Surface Registration
We propose to view non-rigid surface registration as a probabilistic
inference problem. Given a target surface, we estimate the posterior
distribution of surface registrations. We demonstrate how the posterior
distribution can be used to build shape models that generalize better and show
how to visualize the uncertainty in the established correspondence.
Furthermore, in a reconstruction task, we show how to estimate the posterior
distribution of missing data without assuming a fixed point-to-point
correspondence.
We introduce the closest-point proposal for the Metropolis-Hastings
algorithm. Our proposal overcomes the limitation of slow convergence compared
to a random-walk strategy. As the algorithm decouples inference from modeling
the posterior using a propose-and-verify scheme, we show how to choose
different distance measures for the likelihood model.
All presented results are fully reproducible using publicly available data
and our open-source implementation of the registration framework
Towards detecting genotoxic chemicals in food packaging at thresholds of toxicological concern using bioassays with high-performance thin-layer chromatography
High-performance thin-layer chromatography (HPTLC)-bioassays are promising new methods for detecting bioactive chemicals in food packaging. Here, we test whether direct-acting genotoxic chemicals are detectable in food contact materials (FCM) using HPTLC-bioassays. First, an interactive worksheet lays out steps to calculate needed detection limits in (bio)analytical methods from regulatory limits, including thresholds of toxicological concern (TTC). Second, we show that the sensitivity of a HPTLC-genotoxicity assay to low doses of chemicals, including food contact chemicals, is greater than a standardized microtiter plate version and in vitro assays already reported. Third, using HPTLC, we detected genotoxicity in extracts of FCM, and not in simulated migrates of FCM. Applying the worksheet to calculate needed detection limits in FCM migrates, we observed that seven of ten genotoxic chemicals would be detectable with HPTLC if present at the regulatory 10 ppb limit and two of ten at TTC for adults. With development, HPTLC-bioassays might become the best option for supporting safety assessment of genotoxicants in food packaging
- …