94 research outputs found

    Innovative Agents for Actinic Keratosis and Nanocarriers Enhancing Skin Penetration

    Get PDF
    Actinic keratosis and cutaneous squamous cell carcinoma are of increasing importance with aging and increased ultraviolet light exposure in Western societies. Efficient and well-tolerated therapy is still a matter of concern. As with tumours of other organs, new target sites and innovative drugs selectively addressing them are widely looked for. Due to the relevance for DNA synthesis and thus cell proliferation, human DNA polymerase alpha should be such a target, the more so as the three-dimensional structure of the active site has been proposed based on the application of molecular modelling methods and molecular dynamics simulations. The modelled structure of the active site was used for docking nucleotide analogues in order to design selective inhibitors. Consequently, well-fitting thymidine and guanosine analogues were synthesized and tested in vitro for their influence on normal and transformed human keratinocytes. In fact, the combination of modelling studies and in vitro tests allowed us to design antiproliferative and cytotoxic agents which are new drug candidates for the therapy of skin tumours, given the agents are no relevant substrates of nucleotide transporters (MRP-4, MRP-5) expressed by skin cancer cells. Essential kinases for nucleoside activation were detected, too, corresponding with the observed effects of nucleoside analogues. Due to the rather high molecular weight and poor solubility, however, skin penetration should be poor and thus topical therapy may require carriers to improve the uptake. This becomes feasible by lipidic and non-lipidic nanoparticles which can enhance the uptake of lipophilic agents up to 13-fold. Copyright (C) 2010 S. Karger AG, Base

    Glucocorticoids for human skin: New aspects of the mechanism of action

    Get PDF
    Topical glucocorticoids have always been considered first-line drugs for inflammatory diseases of the skin and bronchial system. Applied systemically, glucocorticoids are used for severe inflammatory and immunological diseases and the inhibition of transplant rejection. Owing to the progress in molecular pharmacology, the knowledge of the mechanism of action has increased during the last years. Besides distinct genomic targets, which are due to the activation of specific cytoplasmatic receptors resulting in the (trans-) activation or (trans-) repression of target genes, there are non-genomic effects on the basis of the interference with membrane-associated receptors as well as with membrane lipids. In fact, various glucocorticoids appear to differ with respect to the relative influence on these targets. Thus, the extended knowledge of glucocorticoid-induced cellular signalling should allow the design and development of even more specifically acting drugs-as it has been obtained with other steroids, e.g. estrogens for osteoporosis prevention. Copyright (C) 2005 S. Karger AG, Basel

    A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a ‘two-way road’ – from bench to bedside and backwards from bedside to bench

    A Systematic Approach from a Comparison of Three Glucocorticoids

    Get PDF
    Solid lipid nanoparticles (SLNs) can enhance drug penetration into the skin, yet the mechanism of the improved transport is not known in full. To unravel the influence of the drug-particle interaction on penetration enhancement, 3 glucocorticoids (GCs), prednisolone (PD), the diester prednicarbate (PC) and the monoester betamethasone 17-valerate (BMV), varying in structure and lipophilicity, were loaded onto SLNs. Theoretical permeability coefficients (cm/s) of the agents rank BMV (–6.38) ≧ PC (–6.57) > PD (–7.30). GC-particle interaction, drug release and skin penetration were investigated including a conventional oil-in-water cream for reference. Both with SLN and cream, PD release was clearly superior to PC release which exceeded BMV release. With the cream, the rank order did not change when studying skin penetration, and skin penetration is thus predominantly influenced by drug release. Yet, the penetration profile for the GCs loaded onto SLNs completely changed, and differences between the steroids were almost lost. Thus, SLNs influence skin penetration by an intrinsic mechanism linked to a specific interaction of the drug-carrier complex and the skin surface, which becomes possible by the lipid nature and nanosize of the carrier and appears not to be derived by testing drug release. Interestingly, PC and PD uptake from SLN even resulted in epidermal targeting. Thus, SLNs are not only able to improve skin penetration of topically applied drugs, but may also be of particular interest when specifically aiming to influence epidermal dysfunction

    In vitro Efficacy of a Novel Guanosine-Analog Phosphonate

    Get PDF
    Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer (NMSC), can transform into life-threatening cutaneous squamous cell carcinoma. Current treatment is limited due to low complete clearance rates and asks for novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be an option. In order to enhance skin penetration, solid lipid nanoparticles (SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ± 0.1%. For improved preclinical evaluation, we combined tissue engineering with clinically used keratin-18 quantification. Three doses of 10-3 mol/l OxBu, dissolved in phosphate-buffered saline as well as loaded to SLN, were effective on reconstructed NMSC. Tumour response and apoptosis induction were evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7 activation as well as by reduced expression of matrix metallopeptidase-2 and Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and thus the drug should be subjected to the next step in preclinical evaluation

    Enhanced topical delivery of dexamethasone by β-cyclodextrin decorated thermoresponsive nanogels

    Get PDF
    Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream

    Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles

    Get PDF
    Based on experimental concentration depth profiles of the antiinflammatory drug dexamethasone in human skin, we model the time-dependent drug penetration by the 1D general diffusion equation that accounts for spatial variations in the diffusivity and free energy. For this, we numerically invert the diffusion equation and thereby obtain the diffusivity and the free-energy profiles of the drug as a function of skin depth without further model assumptions. As the only input, drug concentration profiles derived from X-ray microscopy at three consecutive times are used. For dexamethasone, skin barrier function is shown to rely on the combination of a substantially reduced drug diffusivity in the stratum corneum (the outermost epidermal layer), dominant at short times, and a pronounced free-energy barrier at the transition from the epidermis to the dermis underneath, which determines the drug distribution in the long-time limit. Our modeling approach, which is generally applicable to all kinds of barriers and diffusors, allows us to disentangle diffusivity from free-energetic effects. Thereby we can predict short-time drug penetration, where experimental measurements are not feasible, as well as long-time permeation, where ex vivo samples deteriorate, and thus span the entire timescales of biological barrier functioning

    State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    Get PDF
    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing

    A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy

    Get PDF
    Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo
    corecore