634 research outputs found
An extracellular transglutaminase is required for apple pollen tube growth
An extracellular form of the calcium-dependent protein-crosslinking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein:His6– Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activitywas observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization
Proteomic profiling reveals the transglutaminase-2 externalization pathway in kidneys after unilateral ureteric obstruction
Increased export of transglutaminase-2 (TG2) by tubular epithelial cells (TECs) into the surrounding interstitium modifies the extracellular homeostatic balance, leading to fibrotic membrane expansion. Although silencing of extracellular TG2 ameliorates progressive kidney scarring in animal models of CKD, the pathway through which TG2 is secreted from TECs and contributes to disease progression has not been elucidated. In this study, we developed a global proteomic approach to identify binding partners of TG2 responsible for TG2 externalization in kidneys subjected to unilateral ureteric obstruction (UUO) using TG2 knockout kidneys as negative controls. We report a robust and unbiased analysis of the membrane interactome of TG2 in fibrotic kidneys relative to the entire proteome after UUO, detected by SWATH mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD008173. Clusters of exosomal proteins in the TG2 interactome supported the hypothesis that TG2 is secreted by extracellular membrane vesicles during fibrosis progression. In established TEC lines, we found TG2 in vesicles of both endosomal (exosomes) and plasma membrane origin (microvesicles/ectosomes), and TGF-β1 stimulated TG2 secretion. Knockout of syndecan-4 (SDC4) greatly impaired TG2 exosomal secretion. TG2 coprecipitated with SDC4 from exosome lysate but not ectosome lysate. Ex vivo, EGFP-tagged TG2 accumulated in globular elements (blebs) protruding/retracting from the plasma membrane of primary cortical TECs, and SDC4 knockout impaired bleb formation, affecting TG2 release. Through this combined in vivo and in vitro approach, we have dissected the pathway through which TG2 is secreted from TECs in CKD
How the other half lives: CRISPR-Cas's influence on bacteriophages
CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells
used to combat phage and plasmid threats. The host cell adapts by incorporating
DNA sequences from invading phages or plasmids into its CRISPR locus as
spacers. These spacers are expressed as mobile surveillance RNAs that direct
CRISPR-associated (Cas) proteins to protect against subsequent attack by the
same phages or plasmids. The threat from mobile genetic elements inevitably
shapes the CRISPR loci of archaea and bacteria, and simultaneously the
CRISPR-Cas immune system drives evolution of these invaders. Here we highlight
our recent work, as well as that of others, that seeks to understand phage
mechanisms of CRISPR-Cas evasion and conditions for population coexistence of
phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure
Maurizio Ridolfi, Italia a colori. Storia delle passioni politiche dalla caduta del fascismo a oggi, Milano, Le Monnier, 2015
A heuristic approach to the decision-making process of energy prosumers in a circular economy
Renewable distributed energy and self-consumption are promising and sustainable solutions in the energy-transition scenario for moving toward a circular economy. In this future scheme, prosumers are expected to play a leading role in the forthcoming sustainable energy market, facing new technical, economic, and financial challenges as energy producers at a small scale. In fact, the adoption of photovoltaic (PV) self-consumption systems requires mobilizing capital for investment and their interaction with the market. In this scenario, the aim of this paper was to explore insights into the decision-making process of prosumers to enhance the understanding of self-consumption deployment and to support effective policymaking. This study contributes to the state of the art by defining and classifying determinants of the energy prosumers’ decision-making process and their relevance using a heuristic approach. Potential measuring tools and methods are analyzed through a specific case study of Spanish prosumers
Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications
This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy
Methodology for dimensioning the socio-economic impact of power-to-gas technologies in a circular economy scenario
Innovative and sustainable energy technologies are needed in the transition of energy toward a circular economy. Because of the use of renewable energy and carbon utilization, power-to-gas could be a cutting-edge technology that supports the circular model in future sustainable energy markets. However, this technology faces new technical and socio-economic challenges. The use of power-to-gas is limited because of barriers that limit the mobilization of investment capital. In addition, social and economic impacts on the territories in which these facilities are located are under study. In this context, the aims of this paper are: (i) To explore the determinants and barriers for power-to-gas technology to enhance the understanding of investment in innovative energy technologies; and (ii) to support effective policymaking and energy companies’ decision-making processes. This study defines and measures, from a circular economy perspective, the main impacts of the deployment of this technology on a territory in terms of volume of investment, employment generation, and CO2 capture. The study also provides a simplified methodology to contribute to the analysis of the use of power-to-gas. Finally, it improves the knowledge of the socio-economic impact of this cutting-edge technology for the transition of energy to a zero-emission scenario
Biabduction (and related problems) in array separation logic
We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space
- …
