34 research outputs found

    Characterization of Degenerative Changes in the Temporomandibular Joint of the Bengal Tiger (Panthera tigris tigris) and Siberian Tiger (Panthera tigris altaica)

    Full text link
    The articulation of the temporomandibular joint (TMJ) is composed of the temporal bone dorsally, the mandibular condyle ventrally and a fibrous articular disc. The TMJ disc plays an essential role in distributing load between the two articular surfaces. Degeneration of the disc in the presence of joint pathology has been shown in man; however, TMJ pathology has not been documented previously in tigers (Panthera tigris). The mandibular condyle and TMJ disc of a Bengal tiger (P. tigris tigris) and a Siberian tiger (P. tigris altaica) were evaluated grossly and the TMJ disc was characterized biochemically and mechanically. Characterization of the TMJ disc verified region- and direction-dependent biochemical and mechanical properties, reflective of the functional demands on the joint. Degenerative joint disease was observed in both cases and this was more severe in the Siberian tiger. Simultaneous evaluation of joint pathology, biochemical composition and mechanical properties of the TMJ disc revealed a loss in functional properties (tensile anisotropy) of the disc as joint pathology advanced from moderate to severe. TMJ degeneration may compromise the ability of the animal to eat and thrive and may be a factor contributing to the endangered status of these species

    Using representative time slices for optimization of thermal energy storage systems in low-temperature district heating systems

    No full text
    4 th generation district heating and cooling networks (shortly THERNETs) are often coined as a crucial technology to enable the transition towards low-carbon smart energy systems. Most importantly, they open perspectives for integration of low-grade residual heat from industry, renewable energy sources (such as geothermal heat and cold and solar thermal collectors), more efficient energy conversion units (such as collective heat pumps), while thermal energy storage (TES) systems increase system flexibility. In order to optimize design and control of such complex systems, a toolbox modesto (Multi-objective district energy systems toolbox for optimization) is under development. However, the representation of seasonal heat and cold storage systems on an annual basis requires large computational power. In an attempt to decrease computational cost, a technique with representative time slices (inspired by and combining aspects from optimization studies of electrical energy systems, unit commitment problems, thermal systems with short term energy storage and smaller scale industrial thermal systems with longer term energy storage) is developed and tested. The aim of this study is to investigate the applicability of such representative time periods to optimize seasonal TES systems in THERNETs. To this end a full year optimization is compared to one with representative time periods for a realistic case study that uses demand profiles from the city of Genk (Belgium) and energy system parameters from Marstal (Denmark). This comparative study shows that modelling with representative periods is sufficient to mimic the behaviour of a full year optimization. However, when curtailment of solar heat injection occurs, not all representations yield the same results. It was found that for the studied case, a selection of 12 representative weeks performs best, while all reduced optimizations result in a substantial reduction (speed-up of on average x4.8 to x7.7) of the calculation time

    Using representative time slices for optimization of thermal energy storage systems in low-temperature district heating systems

    Get PDF
    \u3cp\u3e 4 \u3csup\u3eth\u3c/sup\u3e generation district heating and cooling networks (shortly THERNETs) are often coined as a crucial technology to enable the transition towards low-carbon smart energy systems. Most importantly, they open perspectives for integration of low-grade residual heat from industry, renewable energy sources (such as geothermal heat and cold and solar thermal collectors), more efficient energy conversion units (such as collective heat pumps), while thermal energy storage (TES) systems increase system flexibility. In order to optimize design and control of such complex systems, a toolbox modesto (Multi-objective district energy systems toolbox for optimization) is under development. However, the representation of seasonal heat and cold storage systems on an annual basis requires large computational power. In an attempt to decrease computational cost, a technique with representative time slices (inspired by and combining aspects from optimization studies of electrical energy systems, unit commitment problems, thermal systems with short term energy storage and smaller scale industrial thermal systems with longer term energy storage) is developed and tested. The aim of this study is to investigate the applicability of such representative time periods to optimize seasonal TES systems in THERNETs. To this end a full year optimization is compared to one with representative time periods for a realistic case study that uses demand profiles from the city of Genk (Belgium) and energy system parameters from Marstal (Denmark). This comparative study shows that modelling with representative periods is sufficient to mimic the behaviour of a full year optimization. However, when curtailment of solar heat injection occurs, not all representations yield the same results. It was found that for the studied case, a selection of 12 representative weeks performs best, while all reduced optimizations result in a substantial reduction (speed-up of on average x4.8 to x7.7) of the calculation time. \u3c/p\u3
    corecore