754 research outputs found
Multiscale Analysis of the Gradient of Linear Polarisation
We propose a new multiscale method to calculate the amplitude of the gradient
of the linear polarisation vector using a wavelet-based formalism. We
demonstrate this method using a field of the Canadian Galactic Plane Survey
(CGPS) and show that the filamentary structure typically seen in gradients of
linear polarisation maps depends strongly on the instrumental resolution. Our
analysis reveals that different networks of filaments are present on different
angular scales. The wavelet formalism allows us to calculate the power spectrum
of the fluctuations seen in gradients of linear polarisation maps and to
determine the scaling behaviour of this quantity. The power spectrum is found
to follow a power law with gamma ~ 2.1. We identify a small drop in power
between scales of 80 < l < 300 arcmin, which corresponds well to the overlap in
the u-v plane between the Effelsberg 100-m telescope and the DRAO 26-m
telescope data. We suggest that this drop is due to undersampling present in
the 26-m telescope data. In addition, the wavelet coefficient distributions
show higher skewness on smaller scales than at larger scales. The spatial
distribution of the outliers in the tails of these distributions creates a
coherent subset of filaments correlated across multiple scales, which trace the
sharpest changes in the polarisation vector P within the field. We suggest that
these structures may be associated with highly compressive shocks in the
medium. The power spectrum of the field excluding these outliers shows a
steeper power law with gamma ~ 2.5.Comment: 12 pages, 12 figure
Electric field inside a "Rossky cavity" in uniformly polarized water
Electric field produced inside a solute by a uniformly polarized liquid is
strongly affected by dipolar polarization of the liquid at the interface. We
show, by numerical simulations, that the electric "cavity" field inside a
hydrated non-polar solute does not follow the predictions of standard Maxwell's
electrostatics of dielectrics. Instead, the field inside the solute tends, with
increasing solute size, to the limit predicted by the Lorentz virtual cavity.
The standard paradigm fails because of its reliance on the surface charge
density at the dielectric interface determined by the boundary conditions of
the Maxwell dielectric. The interface of a polar liquid instead carries a
preferential in-plane orientation of the surface dipoles thus producing
virtually no surface charge. The resulting boundary conditions for
electrostatic problems differ from the traditional recipes, affecting the
microscopic and macroscopic fields based on them. We show that relatively small
differences in cavity fields propagate into significant differences in the
dielectric constant of an ideal mixture. The slope of the dielectric increment
of the mixture versus the solute concentration depends strongly on which
polarization scenario at the interface is realized. A much steeper slope found
in the case of Lorentz polarization also implies a higher free energy penalty
for polarizing such mixtures.Comment: 9 pages, 8 figure
Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions
A theory of radiation absorption by dielectric mixtures is presented. The
coarse-grained formulation is based on the wavevector-dependent correlation
functions of molecular dipoles of the host polar liquid and a density-density
structure factor of the positions of the solutes. A nonlinear dependence of the
absorption coefficient on the solute concentration is predicted and originates
from the mutual polarization of the liquid surrounding the solutes by the
collective field of the solute dipoles aligned along the radiation field. The
theory is applied to terahertz absorption of hydrated saccharides and proteins.
While the theory gives an excellent account of the observations for saccharides
without additional assumptions and fitting parameters, experimental absorption
coefficient of protein solutions significantly exceeds theoretical calculations
within standard dielectric models and shows a peak against the protein
concentration. A substantial polarization of protein's hydration shell is
required to explain the differences between standard theories and experiment.
When the correlation function of the total dipole moment of the protein with
its hydration shell from numerical simulations is used in the present
analytical model an absorption peak similar to that seen is experiment is
obtained. The result is sensitive to the specifics of protein-protein
interactions in solution. Numerical testing of the theory requires the
combination of terahertz dielectric and small-angle scattering measurements.Comment: 11 p
Investigating Differences between Graphical and Textual Declarative Process Models
Declarative approaches to business process modeling are regarded as well
suited for highly volatile environments, as they enable a high degree of
flexibility. However, problems in understanding declarative process models
often impede their adoption. Particularly, a study revealed that aspects that
are present in both imperative and declarative process modeling languages at a
graphical level-while having different semantics-cause considerable troubles.
In this work we investigate whether a notation that does not contain graphical
lookalikes, i.e., a textual notation, can help to avoid this problem. Even
though a textual representation does not suffer from lookalikes, in our
empirical study it performed worse in terms of error rate, duration and mental
effort, as the textual representation forces the reader to mentally merge the
textual information. Likewise, subjects themselves expressed that the graphical
representation is easier to understand
An excess of emission in the dark cloud LDN 1111 with the Arcminute Microkelvin Imager
We present observations of the Lynds' dark nebula LDN 1111 made at microwave
frequencies between 14.6 and 17.2 GHz with the Arcminute Microkelvin Imager
(AMI). We find emission in this frequency band in excess of a thermal
free--free spectrum extrapolated from data at 1.4 GHz with matched uv-coverage.
This excess is > 15 sigma above the predicted emission. We fit the measured
spectrum using the spinning dust model of Drain & Lazarian (1998a) and find the
best fitting model parameters agree well with those derived from Scuba data for
this object by Visser et al. (2001).Comment: accepted MNRA
AMI observations of Lynds Dark Nebulae: further evidence for anomalous cm-wave emission
Observations at 14.2 to 17.9 GHz made with the AMI Small Array towards
fourteen Lynds Dark Nebulae with a resolution of 2' are reported. These sources
are selected from the SCUBA observations of Visser et al. (2001) as small
angular diameter clouds well matched to the synthesized beam of the AMI Small
Array. Comparison of the AMI observations with radio observations at lower
frequencies with matched uv-plane coverage is made, in order to search for any
anomalous excess emission which can be attributed to spinning dust. Possible
emission from spinning dust is identified as a source within a 2' radius of the
Scuba position of the Lynds dark nebula, exhibiting an excess with respect to
lower frequency radio emission. We find five sources which show a possible
spinning dust component in their spectra. These sources have rising spectral
indices in the frequency range 14.2--17.9 GHz. Of these five one has already
been reported, L1111, we report one new definite detection, L675, and three new
probable detections (L944, L1103 and L1246). The relative certainty of these
detections is assessed on the basis of three criteria: the extent of the
emission, the coincidence of the emission with the Scuba position and the
likelihood of alternative explanations for the excess. Extended microwave
emission makes the likelihood of the anomalous emission arising as a
consequence of a radio counterpart to a protostar or a proto-planetary disk
unlikely. We use a 2' radius in order to be consistent with the IRAS
identifications of dark nebulae (Parker 1988), and our third criterion is used
in the case of L1103 where a high flux density at 850 microns relative to the
FIR data suggests a more complicated emission spectrum.Comment: submitted MNRA
Signatures from a merging galaxy cluster and its AGN population : LOFAR observations of Abell 1682
Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOWe present LOFAR data from 110-180 MHz of the merging galaxy cluster Abell 1682, alongside archival optical, radio, and X-ray data. Our images of 6 arcsec in resolution at low frequencies reveal new structures associated with numerous radio galaxies in the cluster. At a resolution of 20 arcsec we see diffuse emission throughout the cluster over hundreds of kiloparsecs, indicating particle acceleration mechanisms are in play as a result of the cluster merger event and powerful active galactic nuclei. We show that a significant part of the cluster emission is from an old radio galaxy with very steep spectrum emission (having a spectral index of α < -2.5). Furthermore, we identify a new region of diffuse steep-spectrum emission (α < -1.1) as a candidate for a radio halo which is co-spatial with the centre of the cluster merger. We suggest its origin as a population of old and mildly relativistic electrons left over from radio galaxies throughout the cluster which have been re-accelerated to higher energies by shocks and turbulence induced by the cluster merger event. We also note the discovery of six new giant radio galaxies in the vicinity of Abell 1682.Peer reviewedFinal Accepted Versio
AMI Large Array radio continuum observations of Spitzer c2d small clouds and cores
We perform deep 1.8 cm radio continuum imaging towards thirteen protostellar
regions selected from the Spitzer c2d small clouds and cores programme at high
resolution (25") in order to detect and quantify the cm-wave emission from
deeply embedded young protostars. Within these regions we detect fifteen
compact radio sources which we identify as radio protostars including two
probable new detections. The sample is in general of low bolometric luminosity
and contains several of the newly detected VeLLO sources. We determine the 1.8
cm radio luminosity to bolometric luminosity correlation, L_rad -L_bol, for the
sample and discuss the nature of the radio emission in terms of the available
sources of ionized gas. We also investigate the L_rad-L_IR correlation and
suggest that radio flux density may be used as a proxy for the internal
luminosity of low luminosity protostars.Comment: submitted MNRA
High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675
We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae
(L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute
Microkelvin Imager (AMI) Large Array. These objects were previously observed
with the AMI Small Array to have an excess of emission at microwave frequencies
relative to lower frequency radio data. In L675 we find a flat spectrum compact
radio counterpart to the 850 micron emission seen with SCUBA and suggest that
it is cm-wave emission from a previously unknown deeply embedded young
protostar. In the case of L1246 the cm-wave emission is spatially correlated
with 8 micron emission seen with Spitzer. Since the MIR emission is present
only in Spitzer band 4 we suggest that it arises from a population of PAH
molecules, which also give rise to the cm-wave emission through spinning dust
emission.Comment: accepted MNRA
- âŠ